
PHYSICAL REVIEW E OCTOBER 1997VOLUME 56, NUMBER 4
Enhanced matrix spectroscopy: The preconditioned Green-function block Lanczos algorithm
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Department of Chemistry and Biochemistry, Institute for Theoretical Chemistry, The University of Texas at Austin,

Austin, Texas 78712-1167
~Received 14 April 1997!

We present herein the results of a doubly filtered block Lanczos code, which effectively uses shifted
simultaneous inverse iteration to make a block tridiagonal representation ofH, a Hamiltonian matrix. The first
filter preconditions the starting block of Lanczos vectors through one or more applications ofp(E), the
preconditioning operator. This block is then used to seed the Lanczos recursion, driven with the Green-function
filter G(E)5(EI2H)21. Each set of successively generated Lanczos vectors is orthogonalized against all
previous ones. These steps allow us to converge eigenvalues nearE, in the interior region of the eigenspec-
trum, with extreme accuracy. Degenerate eigenvalues are reported; ‘‘ghost’’ eigenvalues~multiple copies of
eigenvalues that have already converged! are avoided. For a set number of Lanczos recursions, the use of a
preconditioner effectively doubles the number of converged eigenvalues than are resolved without its use. The
computation time is increased almost imperceptibly. The 2eg←ag torsional transition for the water trimer,
~H2O!3, is examined in an application of our method. We resolve the quantities needed for this calculation is
less than one-fifth the time required to directly diagonalize the matrices, with no loss of accuracy.
@S1063-651X~97!03310-2#

PACS number~s!: 02.70.2c
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I. INTRODUCTION

Central to the theme of quantum physics is the reality t
sooner or later, one is faced with the daunting task of extr
ing eigenvalues and eigenvectors from an often prohibitiv
large Hamiltonian matrix,H. Even with today’s impressive
computing power and technology, we must resort to us
efficient algorithms in order to tackle the most challengi
applications. Recently, a strategy has been invoked unde
namematrix spectroscopy@1–3#: we can peer into any par
of the eigenspectrum and resolve eigenvalues and eigen
tors to machine precision by coupling the Lanczos algorit
with a spectral filter, denotedf (E). BecauseH is not directly
diagonalized~in fact, it need not ever be computed in full!,
we can then work on extremely large problems without co
promising accuracy. The filter should be designed to tune
the undesirable portion of the spectrum, while amplifying t
desired portion.

The single-vector Lanczos algorithm~SLA! @4# for par-
tially tridiagonalizing large, sparse matrices has been wid
used in a variety of applications@5–11#. This approach is
attractive for several reasons: the large Hamiltonian ma
enters into the calculation only in the formation of matri
vector products, which is how the tridiagonal representat
~or Krylov subspace! is constructed, only a few iterations a
needed to rapidly converge the most widely separated ei
values, and the basic algorithm is quite easily coded@12#.

The SLA does have its shortcomings, however. A sign
cant deficiency is the inherent inability of the algorithm
pinpoint multiplicities in the eigenspectrum unless deflat
techniques are employed@13#. The form of the SLA most
widely used in the literature is usually implemented witho
these safeguards. As a result, only single copies of eigen
ues can be reported with confidence. More than one cop
an eigenvalue is a ‘‘ghost’’ and indicates that the eigenva
in question has converged to machine precision@14# ~it
should be noted that this is only a problem if global orthog
nality is not preserved among the Lanczos vectors@15#!. If
561063-651X/97/56~4!/4837~17!/$10.00
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the eigenvalue happens to be one of several truly degene
eigenvalues, we are unaware of this fact unless further t
are performed. And even if these steps are taken, the ei
vectors corresponding to degenerate eigenvalues are not
rectly reported. Further, the Lanczos method usually c
verges eigenvalues and eigenvectors at the opposite en
the eigenspectrum, and is slow to resolve the important in
rior region, unless the local gap is relatively large@1,3#.

Degeneracy is a common feature of many applicatio
that are studied in molecular physics. This degeneracy
ally arises because the molecule possesses some for
symmetry, whether it be permutational symmetry associa
with sets of identical particles, inversion symmetry throu
the center of mass, symmetry associated with rotations a
the center of mass, or point group symmetry associated w
rotations, reflections, and inversions of an equilibrium str
ture. In each case, there is a set of operators forming a m
ematical group, and each group operator commutes with
molecular Hamiltonian. Degeneracy arises when the irred
ible representations for the appropriate group have dim
sions greater than one. For the point groups, this happ
when there is a threefold or higher axis of rotation: irredu
ible representations of at least dimension two are produc

Given that many problems of interest can only be stud
by extracting eigensystem information from Hamiltonia
matrices that describe degenerate systems, we are fortu
that perhaps the most serious limitation of the SLA is eas
remedied by utilizing an extension of the algorithm that c
resolve and report multiplicities: the block Lanczos alg
rithm ~BLA ! @16–19#. Mechanistically identical to the SLA
this approach forms the Krylov subspace by applying
Hamiltonian onto a block matrix~having at least as man
columns as there are expected multiplicities!, which pre-
serves the ‘‘degenerate character’’ of the original proble
The Cullum-Willoughby test for spurious eigenvalues is t
lored specifically for the SLA, and handles the ghost pro
lem quite nicely for those cases@14#. In the block version,
however, the ghost problem is commonly handled by avo
4837 © 1997 The American Physical Society
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4838 56MINEHARDT, ADCOCK, AND WYATT
ing doing too many iterations so that the loss of global
thogonality is not great enough to warrant the appearanc
ghost eigenvalues. The correct number of eigenvalues,
the corresponding eigenvectors, are reported for parts o
eigenspectrum that are well separated.

We are still concerned with resolving the part of t
eigenspectrum in the interior, dense part of the problem.
Lanczos approaches can be coupled with a way to ‘‘
open’’ these target areas, dilating the spacing between a
cent eigenvalues while compressing the uninteresting eig
values and then taking advantage of the convergence p
erties of either the SLA or BLA. Most recently, Wyatt ha
implemented these matrix spectroscopic techniques by d
ing the Lanczos algorithm with what he terms theGreen
function filter, G(E)5(EI2H)21 @1,2#. Following Ericcson
and Ruhe’sshift and invertmethod@3#, the original problem
is recast by shifting the diagonal elements of the Hamilton
matrix by some ‘‘test energy’’E, which corresponds to an
approximation of an eigenvalue lying in some part of t
interior region of interest. In the fortunate case thatH can be
factored, there is a straightforward way to implementshift
and invert: by factoring the shifted matrix, and solving for
new matrix with which the recursion is driven, we can inve
the Hamiltonian and force the gaps between eigenvalues
E to become greatly dilated and thus converge rapidly.
genvalues too far from the test energy are mapped to
uninteresting cluster near zero, which is a fixed point of
nonlinear map. A more detailed explanation of this appro
is given below.

The current work details our procedure for coupling t
BLA with a Green function filter~GFBLA! and a precondi-
tioning loop. In a method similar to Roy and Carrington
guided Lanczosprocedure@20#, we first prime the Lanczos
process by starting it with a block of orthonormal vecto
that are already ‘‘leaning in the direction of’’ a few eige
vectors nearE. This is accomplished before entering th
Lanczos loop by simply performing a few iterations whe
we apply a preconditioning operatorp(E) to a set of vectors.
We then start the Lanczos process with the new, preco
tioned block. We see a marked increase in the numbe
converged eigenvalues for a very modest increase in com
tational time. Each newly generated set of Lanczos vecto
explicitly reorthogonalized against all previously genera
ones. The result of this procedure is that a Cullu
Willoughby-like test for ghost eigenvalues becomes inva
We determine which eigenvalues are good, and which
bad, by comparing two lists of eigenvalues generated by
GFBLA run near a test eigenvalue. Test cases for matrice
dimensionN<3000 are presented. We review both Lancz
algorithms and the Green-function filter~with an example of
its use!, describe our approach for determining good and b
eigenvalues, provide an example that illustrates when
why to use the block variant of Lanczos, outline the prec
ditioning loop, and detail our computational methods in S
II. The results of our tests for the convergence and stab
properties of our code and its application to the 2eg←ag
torsional transition in (H2O)3 are presented in Sec. III. Con
clusions are given in Sec. IV.

II. ALGORITHMS

A. The single-vector Lanczos algorithm

The single-vector Lanczos algorithm~SLA! has been used
as an effective tool in reducing enormous sparse matrice
-
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small, tridiagonal representations of the system space~Kry-
lov subspace! while retaining accurate information about th
extreme upper and lower eigenvalues of the original mat
Poulin and co-workers@9# used the Lanczos algorithm t
extract information about vibrational excitation energies
formaldehyde from extremely large Hamiltonian matric
@the recursive residue generation method~RRGM! @5,6# was
used to tackle the problem#. The photoionization of hydrogen
in an electric field was probed by Karlsson and Goscin
@10#, who modified the RRGM process~which is driven by
the Lanczos algorithm! to facilitate larger calculations tha
do not tax computational resources as much as unoptim
approaches do. Jolicard and Atabek investigated the rat
H21 photodissociation in laser fields by coupling the Lancz
method with a new wave-operator technique@11#. In prac-
tice, the Lanczos algorithm must be used with care. T
propagation of roundoff error~finite precision! has prevented
some potential users from treating it as a ‘‘black box’’ sol
tion to computational problems. We outline the procedu
below and discuss what to some inexperienced users is
most troubling aspect of SLA: that the loss of orthogonal
among Lanczos vectors is both a blessing and a curse.

First, consider the unrealistic case: an ideal computer w
infinite precision arithmetic. The SLA develops a tridiagon
matrix T through a three-term recurrence relation by the s
cessive generation of orthonormal column vectorsqj . The
set of$qj% vectors satisfies the three-term relation

Hqj5bj 21qj 211ajqj1bjqj 11 ,

whereH is any symmetric matrix and$qj% form the columns
in the matrixQ for which QTQ5I andQTHQ5T. In prac-
tice, the SLA is implemented as an iterative process in
following way @12#.

Initialization:

j 50, q050, b051 and r 05q1 .

Iteration:

qj 115r j /bj ,

j→ j 11,

aj5qj
THqj ,

r j5Hqj2ajqj2bj 21qj 21 ,

bj5ir j i2 .

Each pass through the iteration loop produces the ma
elementsaj andbj in the tridiagonal representationTj :

Tj5F a1 b1

b1 a2 b2

� � bj 21

bj 21 aj

G .

BecauseQTHQ5T, the eigenvalues ofH are equal to those
of T. Any number of efficient subroutines can then be us
to diagonalizeT with ease.

The situation is more interesting in finite precision arit
metic. In this case, one must use care when implementing
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56 4839ENHANCED MATRIX SPECTROSCOPY: THE . . .
SLA without taking precautions to protect against the loss
orthogonality among successively generated vectors$qj%.
Although the algorithm provides forlocal orthogonalization
of each qj 11 against the previous$qj%, roundoff error
quickly leads to a set of$qj% in which not all the vectors are
linearly independent.Global orthogonalization, in which
each new qj is orthogonalized against every previo
qj 21,j 22,..., is usually avoided because in the past it has b
computationally demanding and expensive.

Two methods for preserving orthogonality among Lan
zos vectors areselectiveand partial reorthogonalization. In
selectivereorthogonalization@13#, the Lanczos process i
stopped after a few recursions and theL3L matrix Tj is
diagonalized. We examine the error bounds of an unco
puted Ritz vector~the eigenvalues and eigenvectors of t
Lanczos tridiagonal matrix are called Ritz values and R
vectors, respectively, and are approximations to the true
genvalues and eigenvectors ofH!, which is given by the
product ofbj usL j u ~wheresL j is the element in theLth row
and columnj of the eigenvector matrix obtained by diag
nalizing Tj !: if the quantity is sufficiently small, this indi-
cates that the Ritz vector~and its corresponding Ritz value!
has converged. We compute the Ritz vector, store it and
Ritz value, and continue the Lanczos process. Now, we
thogonalize all successively generated Lanczos vec
against the converged Ritz vector. This method is attrac
because we need only store converged Ritz values and v
tors and a small subset of the Lanczos vectors. Further, m
tiple Ritz values can and do converge: after the Ritz vec
corresponding to one Ritz value is ‘‘banished’’~in the words
of Parlett and Scott@13#! from successive Lanczos vector
roundoff error will allow the next Ritz vector~orthogonal to
the first one! to surface and thus the multiple copy of the R
value in question is realized. This method requires multi
runs to be made when more than one Ritz value conver
therefore increasing computational demands.

The partial reorthogonalization@15# scheme monitors the
loss of orthogonality of the most recently computed Lanc
vector, qj , among previously computed Lanczos vecto
When this tolerance is exceeded,qj is orthogonalized agains
a set of Lanczos vectors within which the loss of orthog
nality was greatest. It has been shown that both approa
are effective in terms of convergence and cost@15#.

It turns out that we can still determine which eigenvalu
are multiple copies in the event that we do not reorthogon
ize at all. Cullum and Donath@19# proposed two methods
both of which require additional computations. One res
was that Ritz vectors corresponding to degenerate Ritz
ues will be linearly independent only up to the order of th
degeneracy. The rest of the Ritz vectors associated with
Ritz value will be linearly dependent over the first set a
they correspond to ghosts in the eigenspectrum. Whiche
method is eventually used, the SLA is most accurate w
computing extreme eigenvalues of the eigenvalue spectr

The SLA is attractive in solving large eigenproblems b
cause one only needs to partially constructT in order to yield
excellent approximations to~at least! lmin and lmax. Accu-
rate determination of the extreme eigenvalues of a matrix
dimension 103 can usually be achieved after only 5 or
SLA iterations. Interior eigenvalues also converge quickly
the local gaps are relatively large.
f

n

-

-

z
i-

e
r-
rs
e
c-
l-
r

e
s,

s
.

-
es

s
l-

lt
l-
t
is

er
n

m.
-

f

f

B. The block Lanczos algorithm

All of the procedural details of the SLA are preserved
the block Lanczos algorithm. In effect, matrix-vector mu
tiples are replaced by matrix-matrix multiples, and the res
ant tridiagonal representation ofH is now block tridiagonal.
The main advantage of the BLA over the SLA is that mul
plicities in the eigenvalue spectrum are reported.Aj andBj
are both square matrices, as opposed to the scalar quan
aj andbj generated by the SLA. The dimension ofA is equal
to that ofB and should be determined by the minimum nu
ber of multiplicities expected for an eigenvalue@16–18#.

The salient features of the BLA are given below, follow
ing the work of Grimes and co-workers@18#.

Initialization:

Q050 and B150;

choose theN3M matrix R1 ; orthonormalize

its columns to yieldQ1 .

Iteration:

j 51,

U j5HQj2Qj 21Bj
T ,

Aj5Qj
TU j ,

Rj 115U j2QjAj ,

do the orthogonal factorizationQj 11Bj 115Rj 11 ,

j→ j 11,

whereH is N3N, A andB areM3M , andQ, R, andU are
N3M dimensional matrices. Further, whenR is QR fac-
tored intoQ andB, B is upper triangular andQ is orthonor-
mal. We thus arrive at the block tridiagonal matrixTj ,
which looks like

Tj5F A1 B2
T

B2 A2 B3
T

� � �

Bj 21 Aj 21 Bj
T

Bj Aj

G ,

where, as in the case of the SLA, the Ritz values ofT are
approximations to eigenvalues ofH.

As with the SLA, the loss of orthogonality among ea
successively generatedQ with the previous one is also
problem in the BLA. Again, selective reorthogonalizatio
@13,15,18# has been implemented in practice to preserve
cal, if not global, orthogonality in the desire to extract eige
values of interest in their most accurate approximations
the eigenvalues of the original matrixH.

We chose a block size ofM52 for this study; all results
are for this case unless noted otherwise. The decision to
a particular block size is detailed in the introduction to S
III.
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C. The Green-function filter

Several filters have been used in conjunction with
SLA: anexponential filter, whereH→ f (H)5exp@2bH# was
used to drive the Lanczos algorithm@21#, aGaussian deriva-
tive filter, whereH→ f (E)5(H2EI)exp@2b(H2EI)2# @22#,
and anauxiliary operator, f (E)5(EI2H)2 @23#, have all
been shown to be effective for certain problems~b controls
the width of the filter!. The block version of the filtered
Lanczos algorithm has been used with a filter that appro
mates exp@2H/D# ~D is the interval that encompasses t
part of the eigenspectrum of interest! with a Chebyshev poly-
nomial @24#.

The Green-function filter,G(E)5(EI2H)21, provides
the Lanczos algorithm with a matrix whose spectrum h
been greatly dilated aroundE. The result of using this filter
is that these eigenvalues are resolved first and most a
rately; eigenvalues far fromE are mapped to a cluster ne
zero while eigenvalues nearE are mapped to very large pos
tive or negative values@1,3,18#. Because of these propertie
the Green function is a superb filter~however, that does no
mean that it is easy to implement in the computer code!. For
this study, we apply the Green function toH by factoring the
inverse filter f (E)215(EI2H) and then solving the linea
algebra equationf (E)21Qnew5Qold for Qnew at the start of
each Lanczos step.Qnew thus replaces the matrix-matri
productHQj in the first term of the BLA.

The eigenvalues of the block tridiagonal matrix are
lated to eigenvalues ofH by

lH'lR5E21/lL , ~1!

wherelH is an eigenvalue ofH, lR is a Ritz value, andlL
is an eigenvalue ofTj .

D. Testing for good and bad Ritz values

The single-vector Lanczos algorithm is known to ha
converged a Ritz value when more than one copy of that R
value appears in the ‘‘final list’’ of eigenvalues ofTj @14#. In
fact, this property of the algorithm is naturally exploited b
the loss of global orthogonality of successively genera
vectors, due to the propagation of roundoff error. An a
proach for separating the good and bad eigenvalues was
veloped by Cullum and Willoughby@14#. It is important to
note that this test need only be invoked when successi
generated Lanczos vectorsQj are not fully reorthogonalized
against all previous ones. Further, this test was developed
the SLA case: its implementation for the BLA would b
quite complex, as will be shown below.

The Cullum-Willoughby test, as implemented for the SL
with no reorthogonalization, goes as follows: Afterj Lanc-
zos steps, we have thej 3 j tridiagonal matrix, denotedTj . If
we zero out the first row and column ofTj , then we define a
new matrix calledTj* :

Tj5F a1 b1

b1 a2 b2

� � bj 21

bj 21 aj

G ,
e

i-

s

u-

-

tz

d
-
de-

ly

or

Tj* 5F 0 0

0 a2 b2

� � bj 21

bj 21 aj

G .

We diagonalize both matrices and examine the eigenval
The list of eigenvalues fromTj is called the good list here
and that fromTj* the bad list.~Good and bad are simply
labels and reflect the fact thatTj is a more complete matrix
thanT j* .) If there exist multiple copies of an eigenvalue o
the good list and there is a copy~to within machine preci-
sion! of the same eigenvalue on the bad list, we keep
eigenvalue as good. However, if there is only one copy of
eigenvalue on the good list that matches~again, to within
machine precision! one on the bad list, we throw away tha
eigenvalue. Finally, lone eigenvalues on the good list t
have no match on the bad list are kept as good. Applying
test to a block implementation of the Lanczos algorith
would be tricky, given that we would expect truly good e
genvalues to be present as single and multiple copies in
the good and bad lists.

Our implementation of the BLA with full reorthogonal
ization sidesteps the problem of ghost eigenvalues. Howe
we are left with the matter of determining the following:
what distance fromE do the eigenvalues cease to be su
ciently good approximations to the real eigenvalues ofH?

Our test follows exactly that proposed by Barbour a
co-workers@25#. At the end of j BLA recursions, we have
the (2j )3(2 j ) dimensional block tridiagonal matrix, which
we denoteTj . Because we have dilated the spectrum arou
E and explicitly reorthogonalized all of the successively ge
erated sets of Lanczos vectors that constituteTj , we are
assured that ghosts are not present and that the Ritz va
that have converged so far are very close to real eigenva
of H, but only within a small region aroundE. This state-
ment is not true for eigenvalues that lie at a distance fromE.
We define a truncated Lanczos matrix,Tj 21 as

Tj 215FA1 B2
T

B2 A2 B3
T

� � Bj 21
T

Bj 22 Aj 21

G .

DiagonalizingTj andTj 21 yields good and bad lists, which
both contain degenerate and nondegenerate eigenva
These numbers correspond to the shifted and inverted
values; the backtransformed Ritz values are given by Eq.~1!,
wherelL is an eigenvalue from eitherTj or Tj 21 .

Given two lists of Ritz values, we then proceed in testi
for good eigenvalues. We first determine which eigenval
in each list are degenerate, given a toleranceed ~this is for
practical reasons, as we demonstrate in Sec. III: the a
rithm can resolve Ritz values that differ by less than 1 par
109!. If there exists more than one eigenvalue that diffe
from another by less thaned , then we call those eigenvalue
degenerate. Each list is then collapsed to contain one cop
each eigenvalue; the degeneracy of each is stored in ano
array to be referenced later. Finally, the good and bad l
are compared. If an eigenvalue from the good list differs
less thanek from an eigenvalue on the bad list, we repo
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both the good eigenvalue and its degeneracy. Spe
choices fored andek will be presented in Sec. III.

E. The Hückel matrix for benzene: a simple example

Perhaps the easiest way to illustrate the advantage
using GFBLA over GFSLA is to examine the eigenvalues
the system ofp -electron molecular orbitals in the benze
(C6H6) molecule, as treated by Hu¨ckel molecular orbital
theory. No preconditioning steps were taken for these
amples.

Here, a system ofp electrons is considered to be deloca
ized over the rigid framework of the molecule as dictated
thes electrons. It is assumed that each carbon atom con
utes some amount of itsp character to the molecular orbita
which can be expressed as

C j5(
i 51

6

ci j f i ,

wheref i represents carbon atomi ’s pz atomic orbital andci j
is analogous to a ‘‘mixing coefficient.’’ The atomic orbita
basis set$f i% is assumed to be orthonormal.

The 636 Hamiltonian matrix is parametrized in terms
two quantities,a andb. The diagonal elements of the Hami
tonian matrix are denoteda. In the case of benzene, all th
carbons are equivalent and thus all the diagonal matrix
ments are equal. The off-diagonal elements ofH are given
by b, but only for nearest-neighbor interactions. Otherwi
the off-diagonal element is set to zero. For example, the~1,2!
and ~1,6! elements are bothb but the~1,4! element is zero.
The resultant Hamiltonian matrix is real and symmetric. D
rect diagonalization gives 4 energy levels, the middle two
which are both doubly degenerate. The model Hamilton
matrix is symbolically represented as

H5F a
b
0
0
0
b

b
a
b
0
0
0

0
b
a
b
0
0

0
0
b
a
b
0

0
0
0
b
a
b

b
0
0
0
b
a

G .

1. SLA results

When the GFSLA is used to reduce the Hu¨ckel matrix for
benzene to a tridiagonal form, it does so by a series
matrix-vector multiplications and thus does not build in a
information about the degeneracy of the energy levels in
system. We leta54 andb52 in this example, knowing tha
the corresponding eigenvalues should be 0, 2, 2, 6, 6, an
We shifted the eigenvalue spectrum by lettingE53.5.
Implementing the variation given above, we did 6 iteratio
‘‘by hand’’ with MATHEMATICA . Because this example wa
done without reorthogonalization of each newly genera
Lanczos vector against all previous ones, we must invoke
Cullum-Willoughby test for spurious eigenvalues before
porting our final list of converged eigenvalues. The results
diagonalizingTj and Tj* are given in Table I, where the
eigenvalues ofTj and Tj* have been backtransformed a
cording to the prescription given in Eq.~1!. The eigenvalues
fic

of
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that pass the Cullum-Willoughby test are 8, 6, 2, and
~rounded!. Each one is accurately represented in value,
information about degeneracies is missing. The implicatio
of using the SLA to solve eigenproblems where multiplic
ties in the eigenvalue spectrum exist are clear: not only w
these degenerate states go undetected, there is also the
sibility of misidentifying a bad eigenvalue for that of a tru
one unless a test like that of Cullum-Willoughby is use
Thus, the SLA fails to properly preserve the most importa
information about systems where degeneracies exist.

However, if a full reorthogonalization is done at ea
step, we are left with the task of imposing criteria that det
mine whether or not multiple copies of an eigenvalue are
be called degenerate.MATHEMATICA gives 0, 1.97, 2, 6, 6.01
and 8 as the eigenvalues ofTj . We would most likely not
accept the pairs~1.97, 2! and ~6, 6.01! as degenerate: thi
decision is shown to be valid upon diagonalizingTj 21 ,
which yields 0, 1.91, 2, 6, and 8 as eigenvalues. Apply
our test for accepting Ritz values results in reporting 0, 2
and 8 as ‘‘good.’’

We see that either method is problematic where degen
cies are concerned: in the worst case~no reorthogonaliza-
tion!, degeneracies are missed entirely. In the best c
~complete reorthogonalization!, degeneracies are alluded t
but not resolved with acceptable accuracy.

2. BLA results

Conversely, the block Lanczos algorithm identifies the d
generate eigenvalues correctly, both in number and in qu
tity. We used a block size of 632 for the matrixQ, knowing
in advance that the maximum degeneracy to be expecte
this case was 2. After 3 iterations, the block algorithm yie
the correct values for energiesE1 through E4 , giving
~rounded! l150, l25l352, l45l556, andl658. Note
that because only three iterations were done, it was unne
sary to reorthogonalize each successively generated blocQ.

As long asQ is at least of dimensionN3M ~whereN is
the dimension of the original matrix andM is the maximum
number of multiple eigenvalues expected!, the BLA returns
the proper number of eigenvalues as well as their values

F. Preconditioning the initial Lanczos vectors

Roy and Carrington@20# proposed a method where th
Lanczos process is ‘‘guided’’ to accelerate the converge
of Ritz values near an eigenvalue of interest. The auth
investigated a spectral transform method@which uses a
Gaussian filter forf (H) to drive the Lanczos method# and a

TABLE I. Eigenvalues of the Hu¨ckel matrix for C6H6. Eigen-
values are forTj and Tj* . ‡ represents a backtransformed eige
value ofTj* 52`.

l, Tj l, Tj*

8.0 212.2538
6.21803 6.21803
6.0 6.93602
2.0 1.31776
1.98837 1.98837

22.22045310215 ‡
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scheme for computing an optimized starting vector by us
a Gaussian-windowed Fourier-transform function forq1 .
The latter of these methods was found to be the most att
tive. The approach detailed in our work couples the spec
transform driver with ablock of optimized initial Lanczos
vectors.

The BLA is initiated with a set of orthonormal colum
vectors@18#, which we refer to asQ1 . A common choice is
one where each basis function is equally represented, an
inner product of the vectors is zero. We initially worked wi
the N32 block,

Q15F 1/AN

1/AN

1/AN
A

1/AN

21/AN

1/AN
A

G ,

noting that this combination is suitable only whereN is even
~which can easily be arranged for any case!. Filling Q1 with
randomly generated numbers and then doing aQR factoriza-
tion is also acceptable. However,any waywe arbitrarily fill
Q1 is unfavorable for accelerating the convergence of
Lanczos process.

Therefore, it makes sense to preconditionQ1 so that, in a
sense, the vectors it contains are already ‘‘leaning’’ in
direction of the eigenvectors aroundE. We can then invest a
portion of the computational time and resources saved
reducing the number of Lanczos iterations in other tas
such as factoringEI2H or performing detailed analyses o
the backtransformed Ritz values and vectors.

The preconditioning operatorp(E) acts upon a primitive
initial block, X1 , P times:
g

c-
al

the

e

e

y
s,

p~E!PX15Q1 ,

where an excellent choice would bep(E)[G(E) in cases
whereEI2H can be factored andX1 is any block of ortho-
normal column vectors. When this process is finished,
then start the Lanczos loop with the preconditioned blo
Q1 . For a given number of Lanczos steps, even one lo
through the preconditioner yields more converged eigen
ues than without it. We refer to this scheme as PC-GFBL

However, there will certainly be cases where we just c
not factorEI2H because of its size. We can estimateG(E)
and then apply it several times toX1 through a series of
matrix-matrix multiplications to arrive at a preconditione
starting block~this method is called the estimated inver
GFBLA, or EI-GFBLA!, now denotedQ1 . One method for
generating a model Green function is as follows. Define
submatrixS of EI2H of dimensionp, which is centered
around the diagonal elements closest toE. We approximate
the diagonal elements ofG(E) that fall outside the borders
of S by (EI2Hii )

21. Any element of (EI2H) that is not
within S or on the diagonal is set to zero;S is directly in-
verted. The resultant estimated inverse,G0(E), becomes
p(E) and is used for the preconditioning. The matrix-mat
productG0(E)Qj in the Lanczos loop would be constructe
by using a linear system solver@such as GMRES~general-
ized minimun residual! @26# or DIIS ~direct inversion in the
iterative subspace! @27## or by using perturbative matrix par
titioning techniques@1# at the beginning of each loop. Below
we show a sparse 10310 matrix from whichG0(E) is built
for E53.5 and p54. The submatrixS encompasses th
(5,5)→(8,8) elements off (E):
H53
1
0
0
0

0.5
0
0
0
0

0.25

0
1
0
0
0
0
0
0
0
0

0
0
2
0
0

0.1
0
0
0

0.1

0
0
0
2
0
0
0
0
0
0

0.5
0
0
0
3

0.05
0
0
0
0

0
0

0.1
0

0.05
3
0

0.1
0
0

0
0
0
0
0
0
4
0
0
0

0
0
0
0
0

0.1
0
4
0
0

0
0
0
0
0
0
0
0
5
0

0.25
0

0.1
0
0
0
0
0
0
5

4 ,

G0~E!53
0.4
0
0
0
0
0
0
0
0
0

0
0.4
0
0
0
0
0
0
0
0

0
0

0.66
0
0
0
0
0
0
0

0
0
0

0.66
0
0
0
0
0
0

0
0
0
0

2.02
0.19

0
20.04

0
0

0
0
0
0

0.19
1.94

0
20.38

0
0

0
0
0
0
0
0

22
0
0
0

0
0
0
0

20.04
20.38

0
21.92

0
0

0
0
0
0
0
0
0
0

20.66
0

0
0
0
0
0
0
0
0
0

20.66

4 .

The quality of the approximation is largely a function of the size of the matrix elements ofH that are excluded fromS, the
smaller block that we choose to directly invert. This is illustrated for the present case by examiningG0(E)(EI2H):
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G0~E!~EI2H !53
1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0

0.99
0
0
0
0
0
0
0

0
0
0

0.99
0
0
0
0
0
0

0
0
0
0

1.01
20.0095

0
0
0
0

0
0
0
0

20.0095
0.97

0
0.038

0
0

0
0
0
0
0
0
1
0
0
0

0
0
0
0
0

0.038
0

0.96
0
0

0
0
0
0
0
0
0
0

0.99
0

0
0
0
0
0
0
0
0
0

0.99

4 .
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G. Computational details

We followed the basic outline of Grimes and co-worke
@18# in implementing the block Lanczos code. The Gree
function filter scheme follows that of Wyatt@1# and Ericsson
and Ruhe@3#. The entire Hamiltonian matrix is factored i
the present work: we were able to run test cases foN
<3000 on our IBM RS-6000/370 workstation. All matri
operations are handled by subroutines from BLAS~basic lin-
ear algebra subprograms! and LAPACK ~linear algebra
package! @28#, with the exception of the modified Gram
Schmidt andQR routines, which were hand coded for futu
ease in parallelizing the code. An outline of our code is giv
below. To initialize the procedure, we setQ05B150 and
defineX1 to have orthonormal columns.

A. Form (EI2H).

B. Do an LU factorization of (EI2H).
Start preconditioning loop:P51,2,... .

C. Solvep(E)PX15Q1 for Q1 .
End preconditioning loop.
Start Lanczos loop:j 51,2,... .

D. GivenQj , form Vj5G(E)Qj by solving
(EI2H)Vj5Qj .

E. U j5Vj2Qj 21Bj
T .

F. Aj5Qj
TU j .

G. Rj 115U j2QjAj .

H. Do a QR factorization:Rj 115Qj 11Bj 11 .

I. Orthogonalize columns ofQj 11 against all previousQj .
End Lanczos loop.

J. Compute eigenvalues for bothTj andTj 21 .

K. Test each eigenvalue list for degeneracies: tolerance
tor ed .

L. Collapse each list to one copy of each eigenvalue, ret
ing degeneracy.

M. Keep eigenvalues that appear on both lists: tolerance
tor ek .
-

n

c-

n-

c-

With each pass through the Lanczos loop, we create a
of vectorsQj . In order to perform our complete reorthogo
nalization at each step, we store the new set after ste
above.

III. COMPUTATIONAL RESULTS

The focus of this study is to find an efficient way to a
curately extract eigensystem information from a Hamilton
matrix that may contain degeneracies~here, limited to a two-
fold degeneracy!. We are therefore concerned with the fo
lowing issues: how well do the Ritz values and Ritz vecto
agree with direct diagonalization results? How many eig
pairs do we converge~given ek anded! for a given number
of Lanczos steps? Is there a significant advantage to pre
ditioning? And finally, how much time does it take to co
verge an acceptable number of eigenpairs?

The choice of an approprite block sizeM is a consider-
ation when implementing the block Lanczos algorithm. Co
ceivably, one could reduce the number of Lanczos steps
increasing the size ofM : for instance, instead of doing 1
Lanczos steps withM52, do 5 steps withM54. We are
then faced with solving a linear system with more right-ha
sides than before, but we do not have to do it as many tim
as with M52. The matrix-matrix multiplications within the
Lanczos loop take more time, but again, we do not do
many passes through the loop as with the smaller block s

Golub and Underwood@16# conclude ‘‘it is best to choose
the block size at least as large as the largest multiplic
possessed by any eigenvalue’’ ofH. Ruhe@17# agreed, say-
ing that the block size ‘‘should be chosen as the numbe
independent eigenvectors sought to any cluster of interes
eigenvalues.’’ Grimes and co-workers@18# state that ‘‘in
general, it is best to choose a block size as large as the la
expected multiplicity if eigenvalues of moderate multiplic
ties are expected. This is particularly important if many clu
ters of eigenvalues are expected,’’ as in our test cases. T
found that the cost of a Lanczos run initially decreases w
increasing block size~fewer factorizations, linear system
solves, and matrix-matrix multiplications!, but then in-
creasesbecause the dimension of the matrix containing
Lanczos vectors also increases. It is also noted that main
ing a degree of orthogonality~semiorthogonality in@18#, full
orthogonality in the present study! and backtransforming the
Ritz vectors are substantial contributors to the overall co
They concluded that they did not ‘‘see an optimal choice
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block size.’’ Because we will always know the maximu
expected multiplicity for a Hamiltonian matrix generated
describe a system of a given symmetry, we can follow
advice presented above and restrictM to equal that quantity.

The following subsections describe the model Ham
tonian, the convergence of Ritz values, and how we comp
Ritz vectors ofH. We demonstrate that Ritz values com
puted with the GFBLA agree extremely well with direct r
sults. When preconditioning steps are invoked, the num
of converged Ritz values increases substantially at an alm
unnoticeable increase in computational time. The P
GFBLA is shown to be superior to the EI-GFBLA~for cases
whereEI2H can be factored!. The effects of precondition
ing are evident in plots of expansion coefficients for seve
Lanczos vectors in the eigenvector basis ofH ~obtained from
a direct diagonalization!. Ritz vectors are tested by calcula
ing the overlap coefficients for each Ritz vector in the en
eigenvector matrix ofH. We show that preconditioning
greatly enhances not only the number of converged g
Ritz values, but also their corresponding Ritz vectors@20#.

Finally, we comment on results presented in the followi
sections concerning the timing of our code on the RS-60
The program readable system clock reports execution ti
to 0.1 s. For this reason, the execution times reported in
present study are only valid to within60.1 s.

A. Model Hamiltonian

In practice, we will be extracting eigenvalues fro
Hamiltonian matrices that are very sparse: typically, up
about 6% of the matrix elements will be nonzero. Furth
the off-diagonal elements are usually between 0.01%
0.1% of the smallest diagonal element. Preliminary tests
the code showed that the number of converged Ritz va
was not a strong function of coupling strength. We chose
following model for this study:

Hi ,i5Hi 11,i 115 i ,

wherei 51,N in increments of 2

Hi , j5e210R,

whereiÞ j andRP@0,1) as generated by a random numb
generator.E and the placement of off-diagonal elements a
also randomly determined. Because we are only intereste
the interior region of the eigenspectrum, we enforce the s
to beE5(N/2)R, RP@0,1) as generated by a random num
ber generator.

B. Convergence of Ritz values

For this study, we ran the GFBLA code as describ
above with the option of comparing Ritz values and R
vectors with those from a direct diagonalization ofH, which
is obtained by calling DSPEV~LAPACK @28#!. The direct
list is subjected to the same sorting criteria as the GFB
lists. Hence, we can see how well our computed eigenva
and degeneracies match the results of a direct diagona
tion. Presented in Table II are the results of a small test c
(N5500) where we have reported several converged eig
values aroundE for the matricesTj , Tj 21 , andH. The full
and truncated Lanczos eigenvalue lists have been subje
e
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to the test for multiplicity; the direct results, in the last co
umn, have only been sorted. The preconditioning step
not invoked for this example. Clearly, degeneracy is in
eye of the beholder: only the imposition ofed results in our
code declaring two Ritz values as degenerate. Without
condition, the code resolves the nearly degenerate Ritz
ues with the same accuracy as it does the other Ritz val
When we imposeek ~for this study, we chose 10210!, the list
in Table II yields 10 acceptable eigenvalues, all of whi
agree with direct diagonalization results to at least 8 deci
places.

Four variations of the block Lanczos code were tested
illustrate the advantages of filtering and preconditioning:~i!
no filter and no preconditioning;~ii ! filter and no precondi-
tioning; ~iii ! preconditioning and no filter; and~iv! precondi-
tioning and filter. We choseN51000, r51%, ek510210,
anded51025 for the tests. Each case was timed based on
first appearance of converged Ritz values. The results
given in Table III. For each case given above, every p
through the Lanczos loop involves a minimum of 6 matr
matrix multiplications, aQR factorization, and a modified
Gram-Schmidt operation. The last two operations scale
N2; the matrix-matrix multiplications are much more costl
scaling asN3 @29#. If we precondition or filter, we introduce

TABLE II. Comparison of select Ritz values nearE556.289.
N5500,L520, r51%, anded51025. Ritz values are nondegen
erate except where noted by ‡, which are twofold degenerat
determined byed . All lists were subjected to the same sortin
criteria. Eigenvalues forH are from a direct diagonalization. No
preconditioning was used for these cases.

l, Tj l, Tj 21 l, H

51.013 538 70 51.013 538 70 51.013 538 70
52.996 856 31 52.996 856 31 52.996 856 31
52.999 667 62 52.999 667 62 52.999 667 62
54.998 804 31 54.998 804 31 54.998 804 31
54.999 981 14 54.999 981 14 54.999 981 14

‡56.999 998 04 ‡56.999 998 04 56.999 998 04
56.999 999 96 56.999 999 96 56.999 999 96

‡58.999 999 94 ‡58.999 999 94 58.999 999 94
58.999 999 99 58.999 999 99 58.999 999 99
60.999 988 41 60.999 988 41 60.999 988 41
61.003 857 44 61.003 857 44 61.003 857 44
62.995 561 38 62.995 562 11 62.995 561 30

TABLE III. Timing for different implementations of precondi
tioning and filtering with the block Lanczos algorithm. The numb
of Lanczos stepsL is given for the first appearance of converg
Ritz values.N51000, r51%, ed51025, and ek510210 for all
cases.P510 for ~iii ! and ~iv!. Time is user time, given by execut
ing /usr/bin/time-p a.out on the RS-6000; error is60.1 s.

Method L t ~s!

~i! No filter, no preconditioning 114 94.8
~ii ! Filter, no preconditioning 8 13.7
~iii ! No filter, preconditioning 3 12.4
~iv! Filter, preconditioning 2 12.4
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a factorization step and a linear system solve step, eac
which requireN3 operations. It should be noted, howeve
that we only need to factor once. Further, each pass thro
the Lanczos loop is as costly as 7 preconditioning steps

Given that we are interested in some interior region of
eigenspectrum, we can dismiss methods~i! and~iii ! because
only the extreme Ritz values and vectors will converge wh
we do relatively few Lanczos iterations~interior eigenvalues
will converge eventually, but the cost of doing so many
erations makes the approach unattractive!. We are left with
deciding which of methods~ii ! ~GFBLA! or ~iv! ~PC-
GFBLA! is more effective. As seen in Table III, 10 preco
ditioning steps reduce the number of Lanczos iterations
quired to resolve the first appearing converged Ritz values
a factor of 4. The savings in terms of computational tim
amounts to slightly more than 10%. But why, one might a
should we precondition at all? If we target a certain quan
of Ritz values we want converged, certainly we can just
more Lanczos steps. For example, it would seem reason
to demand 50 converged Ritz values for a single run of
code. For theN51000 case used above, the PC-GFBL
converges 50 Ritz values in 43 s~L550 here!; the GFBLA
needs 7 more Lanczos steps to reach the same goal,
total cost of 48 s. The time demand is now at more than 1
When this savings is taken with the improvement seen in
convergence of Ritz vectors~Sec. III D, below!, the PC-
GFBLA is clearly superior to the GFBLA.

We also see a noticeable change in the extent of con
gence when preconditioning steps are invoked~we denote
the number of preconditioning steps byP!. When using the
GFBLA with small (N<3000) matrices, it makes sense
factor the whole shifted matrix and precondition by solvi
the linear algebra problem that is also solved with ea
Lanczos step~the PC-GFBLA approach!. The EI-GFBLA
scheme, useful for situations where factoring is not possi
is slower than the PC-GFBLA and does not increase con
gence as quickly as PC-GFBLA. Table IV illustrates th
point. We actually see adecreasein the number of con-
verged Ritz values for theP510 step for the EI-GFBLA

TABLE IV. Timing and convergence: PC-GFBLA vs EI
GFBLA. N5500, L520, r51%, ed51025, andek510210. The
directly inverted block size for the EI-GFBLA was fixed at 100 a
E5250.056. Time is user time, given by executing /usr/bin/time
a.out on the RS-6000; error is60.1 s. Values in parentheses are f
the EI-GFBLA cases.

P No. converged t ~s!

0 10 3.8
1 12 ~12! 3.8 ~8.6!
2 12 ~12! 3.9 ~8.6!
3 12 ~12! 3.9 ~8.5!
4 14 ~12! 3.8 ~8.5!
5 14 ~12! 4.0 ~8.6!
6 16 ~12! 4.0 ~8.7!
7 16 ~12! 4.0 ~8.7!
8 16 ~12! 4.0 ~8.8!
9 16 ~12! 4.1 ~8.8!

10 18 ~11! 4.2 ~8.8!
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with a constant block sizep ~accompanied by an increase
computational time!. The PC-GFBLA converges 80% mor
Ritz values withP510 than forP50, with only an 11%
increase in computational time. A 42% increase in time
the EI-GFBLA leads to a gain of only one more Ritz valu

However, this is not generally the case, since we wo
makep, the dimension of the submatrixS that gets directly
inverted, greater thanN/5 for practical purposes. Still, the
number of converged Ritz values is not as strong a func
of the number of preconditioning steps,P, for the EI-
GFBLA as it is of the dimension ofS. In Table V, we show
that no advantage is gained by using the EI-GFBLA untiS
is of dimension~at least! p<0.8N. If one is willing ~or is
forced! to invest the time required for the EI-GFBLA, on
need not sacrifice accuracy: Table VI compares Ritz val
obtained with this method with those from a direct diagon
ization. Given the small return on the time investment, a
the fact that the full reorthogonalization scheme alrea
gives us an acceptable number of converged Ritz values
EI-GFBLA is hardly an attractive preconditioner.

The PC-GFBLA is clearly superior if the problem
small. The sparsity of the matrix appears to have little,
any, effect on convergence~Table VII! ~the same was true
for EI-GFBLA!. Test cases for 500<N<3000 show that for
10 preconditioning steps, the most we increase user tim
by 16% ~which, for the case in question, converges fo
times the number of Ritz values that we would get if we d
not precondition!. The largest return on our investment w
for theN53000 case, where time increased 5% and we c
verged 8 Ritz values instead of 2~Table VIII!.

TABLE V. Block size vs convergence for EI-GFBLA.L510,
r51%, ed51025, andek510210. For N51000,E5500.056. For
N52000, E51000.056.P510 for all cases. Time is user time
given by executing /usr/bin/time-p a.out on the RS-6000; erro
60.1 s.

p No. converged t ~s!

N51000
100 4 49.5
200 4 49.7
300 4 50.8
400 4 52.8
500 4 55.3
600 4 57.2
700 4 61.7
800 5 67.7
900 6 74.9

1000 8 86.1

2000
1000 4 139.4
1200 4 149.3
1400 4 185.9
1600 4 259.7
1700 4 261.7
1800 5 295.0
1900 8 331.8
2000 8 369.2
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The excellent agreement between Ritz values retur
from the PC-GFBLA and a direct diagonalization ofH attest
to the advantage of using both the Green-function filter a
full reorthogonalization at each Lanczos step. The ghost
genvalue problem is avoided, while the block structure of
BLA allows us to resolve degenerate~according to our cri-
teria!, nearly degenerate, and nondegenerate eigenvalue
H nearE. If EI2H can be factored, then the advantages
preconditioning are maximized in terms of the number
converged Ritz values. If we fix the number of Ritz valu
we want to see converged, we must invest 10% more tim
resolving these quantities without preconditioning than w
preconditioning. IfEI2H cannot be factored, precondition
ing can still be done, but the return on user time invested
converged Ritz values makes this method~EI-GFBLA! less
attractive than PC-GFBLA.

C. Eigenvector composition of the Lanczos vectors

The effect of using a preconditioner is most clearly illu
trated when we plot the expansion coefficients of se
Lanczos vectors in the eigenvector basis ofH. For a given
number of Lanczos recursions,L, we have anN32L array
of orthonormal Lanczos vectors,$QL%. For Lanczos vector
j , we let

TABLE VI. Converged eigenvalues: EI-GFBLA vs direct.N
51000, L510, r51%, ed51025, ek510210, E5500.056, and
P510. The six Ritz values converged for the EI-GFBLA in 75.0
The block sizep5900 for the submatrixS. Ritz values noted by ‡
converged when the preconditioning steps were left outt
547.8 s). Time is user time, given by executing /usr/bin/time
a.out on the RS-6000: error is60.1 s.

EI-GFBLA Direct

497.001 403 05 497.001 403 05
‡498.999 074 54 498.999 074 54
‡499.001 448 02 499.001 448 02
‡500.999 788 41 500.999 788 41
‡501.001 406 92 501.001 406 92
502.984 602 22 502.984 602 22

TABLE VII. Converged Ritz values for the PC-GFBLA: num
ber of preconditioning steps (P) vs sparsity~r! of H. N51000,L
520, ed51025, andek510210.

P/r 1% 5% 10%

0 10 10 10
1 10 10 10
2 12 12 12
3 12 12 12
4 14 14 14
5 14 14 14
6 14 15 14
7 16 16 16
8 16 16 16
9 18 18 18

10 18 18 18
d
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ci5~Qj
TZi !

2 ~ i 51,2,...,N!, ~2!

whereQj is a Lanczos vector andZi is an eigenvector ofH.
If we do not precondition, thenQ1 is simply

Q15F 1/AN

1/AN

1/AN
A

G .

If we use Eq.~2! to plot ci for Q1 , as is shown in Fig. 1~a!,
we see that the expansion coefficient is more or less a c
stant over the entire range of eigenvectors$Zi%. That is, there
are almost equal amounts of every eigenvector ofH in Q1 ,
which is not a good way to start if we want to make the m
of a few Lanczos steps. The case shown in Fig. 1~a! is re-
plotted in Fig. 1~b!, with the important modification that we
have done one preconditioning step. Not only hasci grown
in the region around eigenvectors nearE, butci is now much
smaller for every eigenvector ofH some distance away from
E than it was previously:215< ln ci<212 now, whereas
ln ci'27 without preconditioning.

We can also examine other Lanczos vectors from$QL%.
Each Lanczos step gives us a set of two new vectors,Qnew.
The vectors are orthogonal to each other and to all pre
ously generated Lanczos vectors. There should be no c
ponent of any converged eigenvector~which would be asso-
ciated with a previous vector or set of vectorsQprevious! in
Qnew. As successiveQnew’s are formed, we should be work
ing our way out fromE and into the surrounding eigenspe
trum. Figures 2~a!–2~d! further illustrate this point: expan
sion coefficients for Q1 , Q5 , Q10, and Q40 in the
eigenvector basis are shown, whereN51000, L520, r
51% and the number of preconditioning steps,P, is fixed at
10. A sharp spike in Fig. 2~a! corresponds toQ1 having
significant components of an eigenvector whose eigenva
is closest toE ~here,E5112.579!. Figure 2~b! shows the
peak aroundE widening asQ5 now ‘‘picks out’’ eigenvec-
tors a little further from the previously converged ones. T
broadening continues as we look atQ10 @Fig. 2~c!# andQ40
@Fig. 2~d!#, the last Lanczos vector for this test case. Besi
the growing area being covered aroundE, we also see the
growth of a deep trough in the large peak. This feature i
remnant of our full reorthogonalization scheme: the width

.

TABLE VIII. Timing and convergence: PC-GFBLA.L510, r
51%, ed51025, ek510210, andP510. Numbers in parenthese
are for GFBLA with no preconditioning. Time is user time, give
by executing /usr/bin/time-p a.out on the RS-6000; error is60.1 s.

N Converged t ~s!

500 8 ~2! 2.9 ~2.5!
1000 8 ~2! 14.6 ~13.2!
1500 6 ~2! 39.8 ~36.2!
2000 6 ~2! 84.9 ~78.1!
2500 8 ~2! 157.1 ~140.2!
3000 8 ~2! 323.6 ~308.5!
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FIG. 1. Expansion coefficients for Lanczo
vector Q1 in the eigenvectors ofH: ~a! no pre-
conditioning (P50), ~b! one preconditioning
step (P51). N51000,L520, andr51%.
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the trough describes a bandwidth, within which we have c
verged all the eigenvectors closest toE for a given number
of Lanczos steps.

D. Computation of Ritz vectors from the Lanczos vectors

After a number of Lanczos steps (L), we have con-
structed the (2L)3(2L) projection ofG(E) in the Lanczos
basis:

QTG~E!Q5T. ~3!

Diagonalizing the block tridiagonal matrixT yields

STTS5l⇒T5SlST

and, using Eq.~3!, we see that

~QS!TG~E!~QS!5l.

Thus,V5QS is theN32L matrix of Ritz vectors ofG(E).
It is instructive to look at the overlap of a Ritz vecto

~denotedVi! versus the corresponding eigenvector ofH ~de-
-notedZi!, as determined from a direct diagonalization. T
better our methods, the closer to unity will be what we defi
assi , the overlap coefficient:

si5(
j 51

N

Vi
TZj . ~4!

Further, if Vi is very close to one eigenvector and nea
orthogonal to the others,

usi u'1 ~5!

for any i ~we take the absolute value because the phase o
eigenvector varies!. Because of the global reorthogonaliz
tion, we would expect mostsi to be close to unity for some
distance away fromZshift .

The effect of preconditioning is immediately noticeable
we plot usi u for different Ritz vectorsVi . In Fig. 3~a!, we
show such a plot for a case whereN51000, L520, r
51%, ed51025, ek510210, andP50 ~that is, no precon-
ditioning!. Working our way in from the ends of the plot, w
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FIG. 2. Expansion coefficients of precond
tioned Lanczos vectorsQi in the eigenvectors of
H: ~a! Q1 , ~b! Q5 , ~c! Q10, ~d! Q40. N51000,
L520, r51%, andP510.
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see thatusi u'1 for only about 17 of our backtransforme
Ritz vectors~the ends of the plot correspond to converg
eigenvectors closest to the shift!. The width of the middle
region of the plot indicates that many~slightly over 20! of
our backtransformed Ritz vectors have significant com
nents of the other eigenvectors: predictably, these Ritz v
tors are at some distance away fromZshift . The picture
changes when we look at Fig. 3~b!, which was produced
under the same conditions as Fig. 3~a! with the exception
that 10 preconditioning steps were taken (P510). Now,
about 25 backtransformed eigenvectors satisfy Eq.~5!, a di-
rect result of preconditioning. There is now a wider interv
aroundE within which our backtransformed Ritz vectors a
‘‘pure’’ ~i.e., they have very small components of the oth
eigenvectors that encompass the space ofH!.

E. Error bounds on eigenpairs ofT

There is~at least! one more test that illustrates the quali
of our preconditioning method. Similar to the calculatio
performed before computing a Ritz vector in the select
reorthogonalization scheme of Parlett and Scott@13#, we can
-
c-

l

r

e

use the block variant@18# to monitor the convergence of Rit
values and their associated Ritz vectors. Recalling the n
tion used above, we denote a backtransformed Ritz pai
lR , V. The quality of the approximation of a Ritz pair to th
true, corresponding eigenpair ofH is @18#

iHVj2Vjl j ~R!i25iBj 11Sj i2 , ~6!

where the lastM elements of thej th column ofS are used in
Eq. ~6! ~here,M52!. The 232 matrix Bj 11 is not used in
forming T but is computed during the last Lanczos recurs
before we terminate the run. Equation~6! is more useful if
we implement the Lanczos algorithm without shifting a
inverting: we introduce error by backtransforming Ritz va
ues and vectors and need to account for these sources ac
ingly. Following Ericsson and Ruhe@3#, we can instead use
the eigenvalue error bound:

g[ulH2lRu<
iBj 11Sj i2

l j ~T!
2 , ~7!
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FIG. 2 ~Continued!.
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wherelT is an eigenvalue ofT ~not yet backtransformed!.
Equation~7! tells us that either large values oflT ~which are
located nearE! or small values ofiBj 11Sj i2 will minimize
g, the difference between an eigenvalue ofH and a com-
puted Ritz value.

In Sec. III D, we plottedusi u for $Vi%, the set of Ritz
vectors, and showed that the Ritz vectors near the ‘‘edg
of the plots@Figs. 3~a! and 3~b!# correspond to very good
approximations of eigenvectors ofH. Based upon the rela
tionship expressed in Eq.~6!, this is one way of saying that i
the lastM components of the eigenvectorSj are small, then
the Ritz vector that is constructed with thatSj and the cor-
responding set of Lanczos vectors has converged. We
ask the following: what are the minimum and maximum v
ues that the left-hand side of Eq.~7! can take? If we know
the answer to this question, then we have yet another
available for determining the accuracy of our methods a
the efficacy of our preconditioning strategy.

The two cases used to plot Figs. 3~a! and~b! are now used
to show how the error bound,g, is improved upon precon
ditioning the starting block of Lanczos vectors. As in t
’’

w
-

ol
d

previous sections, the effect is clearly seen: Figure 4~a!
shows a plot of lngi versus the indexi on the eigenvalue
l i(T) for the case where no preconditioning steps w
taken, and Fig. 4~b! illustrates how muchg i decreases when
P510. Because we save all our Lanczos vectors and
quickly and easily compute the eigenvalues and eigenvec
of T, the test outlined above is available for our use at alm
no extra computing cost. If we choose ag that is acceptable
for the range of eigenpairs ofH we wish to compute, then we
have a control on convergence that double checks
choices ofed andek . For instance, if we were to accept a
converged a Ritz eigenpair for which lng<210, then the 10
preconditioning steps yield 18 acceptable eigenvalueslT that
would be backtransformed and reported as good approxi
tions ~along with their corresponding Ritz vectors! to an
eigenpair ofH. If we neglect to precondition, only 14 eigen
values ofT ~and thus 14 eigenvectors ofT! meet our crite-
rion. Recalling the results presented in Table VII, in whi
10 and 18 Ritz values were reported as acceptable for
P50 andP510 cases, respectively, we see that our cho
of g is too big. If we make lng<211, then we have agree
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FIG. 3. Overlap coefficients of Ritz vector
$V%: ~a! P50; ~b! P510. N51000, L520, r
51%, ek510210, anded51025.
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tor,
pre-
ment with the results presented in Table VII. This proced
can be used either in-line as in the selective reorthogona
tion scheme@13# or, as presented here, as a final check
how many eigenpairs ofT are acceptable Ritz pairs.

F. The water trimer

1. Introduction and model

Recently, a number of experimental and theoretical st
ies have focused upon the spectra of water clusters@30–40#.
These studies provide valuable insights into the transi
between small water clusters, characterized by a few vib
tional degrees of freedom, and bulk water, whose proper
are frequently modelled by statistical mechanics. The rec
far-infrared studies by Saykally and co-workers on t
vibration-rotation-torsion transitions of water clusters in j
cooled expansions have provided a wealth of data that
lead to a greatly improved understanding of the intermole
lar potential surfaces governing the cluster dynamics@30–
36#. The low-frequency quantum tunneling and torsional e
citations of the water trimer,~H2O!3, have been the focus o
some of the studies@36,37#.
e
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In its equilibrium geometry, three OH bonds tend to lie
the plane defined by the three O atoms, which lie near
vertices of an equilateral triangle. In the equilibrium stru
ture @38,39,41#, the other three H atoms lie with two on on
side and one on the opposite side of the oxygen plane, s
as the up-up-down geometry, denoteduud. One of the H
atoms, say the first one that is pointed up, can flip to
down position by rotating about the planar O-H bond, lea
ing to the isoenergetic structure denoteddud. Other hydro-
gen atom flips about the planar O-H bonds lead to a multip
minima potential energy surface. These low-frequen
hydrogen-atom torsional energy levels are labeledag , au ,
eg , or eu , according to the irreducible representations of t
groupC3h .

As an application of the PC-GFBLA to a nontrivial prob
lem in molecular spectroscopy, we will calculate th
2eg←ag torsional transition for the water trimer. Theeg

representation is doubly degenerate;ag is nondegenerate
Details concerning the coordinates, Hamiltonian opera
pseudospectral basis sets, and symmetry adaptation are
sented in the study by Guiang and Wyatt@42#. However, for
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FIG. 4. Error bounds forlT : ~a! P50; ~b!
P510. N51000, L520, r51%, ek510210,
anded51025.
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completeness, a brief overview is presented here.
The three torsional coordinates are denoted$x1 ,x2 ,x3%

and the torsional Hamiltonian operator is given by@40#

H52BF ]2

]x1
2 1

]2

]x2
2 1

]2

]x3
2G1V~x1 ,x2 ,x3!,

whereB is an effective torsional constant andV(x1 ,x2 ,x3)
is the three-dimensional torsional potential energy surface
order to develop this potential surface, a series ofab initio
electronic structure calculations were performed@42# and the
results were corrected for basis set superposition erro
employing the counterpoise correction method@43,44#. The
corrected energies were then fit to an 11-parameter fu
tional form, the CKL ~Cieplak-Kollman-Lybrand! potential
@45#. The basis set was constructed from the direct produc
three one-dimensional basis sets, each one of which ap
to a single torsional coordinate. The pseudospectral te
nique was used to construct the basis set for each torsi
coordinate@46#. Along each of these coordinates, an o
number of grid points~denotedNp! was used, and associate
In

y

c-

of
ies
h-
al

with each of these points is a pseudospectral basis func
f j (xk). The functions that were used are defined in Vinc
et al. @46#. Finally, from the large direct product basis set~of
dimensionNp

3!, projection operators@47# were used to build
four symmetry adapted subspaces, one for each of the
ducible representations ofC3h . Only the eg and ag sub-
spaces are considered in the present study.

2. Results

Each of the subspaces was examined for two basis
sizes. The resulting Hamiltonian matrices were of dimens
N52280,3080 for the twoeg cases andN51150,1551 for
the correspondingag cases. The PC-GFBLA paramete
were set toP510, ek510210, and ed51025; Ritz values
and Ritz vectors were computed. We were able to conve
the needed eigenvalues for all four matrices with only
Lanczos steps (L53). A small shift,E50.05, was chosen
because we were interested in only the first few smallest R
values~matrix elements are generated in units of kcal/mo!.
All matrices were directly diagonalized~eigenvalues and
eigenvectors! to assess the accuracy and efficiency of
PC-GFBLA.
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Because the Hamiltonian matrices were stored on d
and read into the PC-GFBLA code, most of the real and u
time ~reported by executing /usr/bin/time-p a.out on the R
6000! is accounted for by disk I/O operations. We timed t
same runs for estimates of I/O time by stopping each
immediately after the disk file was completely read into co
memory. The difference is then reported as the time spen
executing operations other than I/O~i.e., Lanczos iterations
diagonalizing the resulting matrixT, and backtransforming
Ritz values and Ritz vectors!. Adjusted times for each cas
are reported in Table IX. The 2eg←ag transition is calcu-
lated as 113.6 cm21 for both basis set sizes. The direct r
sults and the PC-GFBLA results agree exactly for up to~at
least! 8 decimal places. The assignment of this transition t
band at 98.1 cm21 has been reported by Klopper and Schu¨tz
@48#; Sabo and co-workers@40# calculated this transition a
96.9 cm21 using a three-dimensional DVR approach. Calc
lations made using a more refined potential than was use
the present study are presented in Guiang and Wyatt@42#.

The calculations made for the water trimer present
most compelling argument in favor of using a method su
as the PC-GFBLA: even though we were only interested
the lowest eigenvalue of theag matrices and the second low
est eigenvalue of theeg matrices~and, for other applications
the corresponding eigenvectors!, we would be forced to do a
direct diagonalization ofH to get the information. For the
larger basis set calculations, this translates to a more
fivefold increase in user time. The PC-GFBLA is clearly
more efficient way to obtain the same information with t
same accuracy.

IV. CONCLUSIONS

We have reported on an enhanced matrix spectrosc
technique for resolving the interior, possibly degenera

TABLE IX. Time is adjusted user time, given by executin
/usr/bin/time-p a.out on the RS-6000; error is60.1 s. Disk I/O time
for reading the Hamiltonian matrix has been subtracted from
quantities given in this table.

Matrix PC-GFBLA ~s! Direct ~s!

ag , N51150 20.9 66.6
ag , N51551 52.4 208.3
eg , N52280 139.2 633.1
eg , N53080 288.7 1697.7
r-
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eigenspectrum ofH, which is effectively probed by using th
Green-function filterG(E)5(EI2H)21 to drive the block
Lanczos recursion. Preconditioning the initial block of Lan
zos vectors increases the number of converged Ritz va
and Ritz vectors substantially without significantly increa
ing computational time for cases whereEI2H @the inverse
filter, f (E)21# can be factored~PC-GFBLA!. When factor-
ing f (E)21 is not possible, preconditioning can still be a
complished by estimating the Green-function filter byG0(E)
~the EI-GFBLA method!. The block Lanczos procedur
would be driven by solving forG0(E)Qj at each step by
using an iterative linear system solver~such as GMRES@26#
or DIIS @27#! or by using matrix partitioning and perturbativ
techniques@1,2#.

The PC-GFBLA approach is clearly superior to the E
GFBLA: any number of preconditioning steps greatly e
hance the rate of convergence of Ritz values near the s
For small cases (N<3000), a 16% investment in user tim
~at most! can result in converging almost one Ritz value p
Lanczos step. We store all Lanczos vectors and do a c
plete reorthogonalization of every newly generated set
Lanczos vectors against every previously generated
Ghost eigenvalues are not reported. Good eigenvalues
determined by comparing two lists of Ritz values from d
agonalizing the full and truncated Lanczos matrices, th
retaining values that appear on both lists. Degenerate
nondegenerate eigenvalues are reported in excellent ag
ment with results from directly diagonalizingH.

Eigenvectors computed with the PC-GFBLA are linea
independent within a larger interval aroundE than those
computed without preconditioning. Error bounds on Ritz v
ues can be computed at no extra cost and are shown to
reliable check on the convergence of a Ritz pair when u
in conjunction with user-specified sorting and retention c
teria ed andek .
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