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Enhanced matrix spectroscopy: The preconditioned Green-function block Lanczos algorithm
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We present herein the results of a doubly filtered block Lanczos code, which effectively uses shifted
simultaneous inverse iteration to make a block tridiagonal representatldn atHamiltonian matrix. The first
filter preconditions the starting block of Lanczos vectors through one or more applicatignEpf the
preconditioning operator. This block is then used to seed the Lanczos recursion, driven with the Green-function
filter G(E)=(EI—H)~1. Each set of successively generated Lanczos vectors is orthogonalized against all
previous ones. These steps allow us to converge eigenvalue& n@athe interior region of the eigenspec-
trum, with extreme accuracy. Degenerate eigenvalues are reported; “ghost” eigenfraluéple copies of
eigenvalues that have already convelgat avoided. For a set number of Lanczos recursions, the use of a
preconditioner effectively doubles the number of converged eigenvalues than are resolved without its use. The
computation time is increased almost imperceptibly. Tleg<2a, torsional transition for the water trimer,
(H,0)3, is examined in an application of our method. We resolve the quantities needed for this calculation is
less than one-fifth the time required to directly diagonalize the matrices, with no loss of accuracy.
[S1063-651%97)03310-2

PACS numbdps): 02.70—c

[. INTRODUCTION the eigenvalue happens to be one of several truly degenerate
eigenvalues, we are unaware of this fact unless further tests
Central to the theme of quantum physics is the reality thadre performed. And even if these steps are taken, the eigen-
sooner or later, one is faced with the daunting task of extractvectors corresponding to degenerate eigenvalues are not cor-
ing eigenvalues and eigenvectors from an often prohibitivelyectly reported. Further, the Lanczos method usually con-
large Hamiltonian matrixH. Even with today’s impressive verges eigenvalues and eigenvectors at the opposite ends of
computing power and technology, we must resort to usinghe eigenspectrum, and is slow to resolve the important inte-
efficient algorithms in order to tackle the most challengingrior region, unless the local gap is relatively laide3].
applications. Recently, a strategy has been invoked under the Degeneracy is a common feature of many applications
namematrix spectroscopyl1—3]: we can peer into any part that are studied in molecular physics. This degeneracy ger-
of the eigenspectrum and resolve eigenvalues and eigenveally arises because the molecule possesses some form of
tors to machine precision by coupling the Lanczos algorithmsymmetry, whether it be permutational symmetry associated
with a spectral filter, denotel E). BecauseH is not directly ~ with sets of identical particles, inversion symmetry through
diagonalized(in fact, it need not ever be computed in jull the center of mass, symmetry associated with rotations about
we can then work on extremely large problems without comthe center of mass, or point group symmetry associated with
promising accuracy. The filter should be designed to tune oumtations, reflections, and inversions of an equilibrium struc-
the undesirable portion of the spectrum, while amplifying theture. In each case, there is a set of operators forming a math-
desired portion. ematical group, and each group operator commutes with the
The single-vector Lanczos algoritht&LA) [4] for par-  molecular Hamiltonian. Degeneracy arises when the irreduc-
tially tridiagonalizing large, sparse matrices has been widelyble representations for the appropriate group have dimen-
used in a variety of application®—11]. This approach is sions greater than one. For the point groups, this happens
attractive for several reasons: the large Hamiltonian matrixvhen there is a threefold or higher axis of rotation: irreduc-
enters into the calculation only in the formation of matrix- ible representations of at least dimension two are produced.
vector products, which is how the tridiagonal representation Given that many problems of interest can only be studied
(or Krylov subspackis constructed, only a few iterations are by extracting eigensystem information from Hamiltonian
needed to rapidly converge the most widely separated eigemaatrices that describe degenerate systems, we are fortunate
values, and the basic algorithm is quite easily codid]. that perhaps the most serious limitation of the SLA is easily
The SLA does have its shortcomings, however. A signifi-remedied by utilizing an extension of the algorithm that can
cant deficiency is the inherent inability of the algorithm to resolve and report multiplicities: the block Lanczos algo-
pinpoint multiplicities in the eigenspectrum unless deflationrithm (BLA) [16—19. Mechanistically identical to the SLA,
techniques are employdd3]. The form of the SLA most this approach forms the Krylov subspace by applying the
widely used in the literature is usually implemented withoutHamiltonian onto a block matrixhaving at least as many
these safeguards. As a result, only single copies of eigenvatolumns as there are expected multiplicitjehich pre-
ues can be reported with confidence. More than one copy dferves the “degenerate character” of the original problem.
an eigenvalue is a “ghost” and indicates that the eigenvalud he Cullum-Willoughby test for spurious eigenvalues is tai-
in question has converged to machine precisja@d] (it lored specifically for the SLA, and handles the ghost prob-
should be noted that this is only a problem if global orthogo-lem quite nicely for those cas¢4]. In the block version,
nality is not preserved among the Lanczos vecfdfs). If however, the ghost problem is commonly handled by avoid-
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ing doing too many iterations so that the loss of global or-small, tridiagonal representations of the system spiceg-
thogonality is not great enough to warrant the appearance dfv subspacewhile retaining accurate information about the
ghost eigenvalues. The correct number of eigenvalues, argktreme upper and lower eigenvalues of the original matrix.
the corresponding eigenvectors, are reported for parts of theoulin and co-worker$9] used the Lanczos algorithm to
eigenspectrum that are well separated. extract information about vibrational excitation energies of
We are still concerned with resolving the part of the formaldehyde from extremely large Hamiltonian matrices
eigenspectrum in the interior, dense part c_)f the problem. Thﬁhe recursive residue generation metiiBRGM) [5,6] was
Lanczos approaches can be coupled with a way t0 “pry;seq to tackle the probleiirhe photoionization of hydrogen
open” these target areas, dilating the spacing between adigs; o electric field was probed by Karlsson and Goscinski
cent eigenvalues While compressing the uninteresting eige 10], who modified the RRGM proceswhich is driven by
values and then taking advantage of the convergence pro e Lanczos algorithinto facilitate larger calculations that

erties of either the SLA or BLA. Most recently, Wyatt has . e
implemented these matrix spectroscopic techniques by driyi0 not tax computational resources as much as unoptimized

ing the Lanczos algorithm with what he terms tBeeen apz)proaches do. .Jo'lica'rd and Atabek investigated the rate of
function filter G(E)=(EI—H)~* [1,2]. Following Ericcson H2* photodlssomatlon in laser fields by cou_JpImg the Lanczos
and Ruhe'sshift and invertmethod[3], the original problem Method with a new wave-operator technidud]. In prac-

is recast by shifting the diagonal elements of the Hamiltoniarfice: theé Lanczos algorithm must be used with care. The
matrix by some “test energy’E, which corresponds to an Propagation of roundoff errdfinite precision has prevented
approximation of an eigenvalue lying in some part of theSOme potential users from treating it as a “black box™ solu-
interior region of interest. In the fortunate case tHatan be ~ tion to computational problems. We outline the procedure
factored, there is a straightforward way to implemehift ~ below and discuss what to some inexperienced users is the
and invert by factoring the shifted matrix, and solving for a most troubling aspect of SLA: that the loss of orthogonality
new matrix with which the recursion is driven, we can invertamong Lanczos vectors is both a blessing and a curse.

the Hamiltonian and force the gaps between eigenvalues near First, consider the unrealistic case: an ideal computer with
E to become greatly dilated and thus converge rapidly. Eiinfinite precision arithmetic. The SLA develops a tridiagonal
genvalues too far from the test energy are mapped to amatrix T through a three-term recurrence relation by the suc-
uninteresting cluster near zero, which is a fixed point of thecessive generation of orthonormal column vectgys The

nonlinear map. A more detailed explanation of this approaclet of{q;} vectors satisfies the three-term relation
is given below.

The current work details our procedure for coupling the HQ;=Db;_10;-11+2a;q;+b;q;+1,
BLA with a Green function filtefGFBLA) and a precondi-
tioning loop. In a method similar to Roy and Carrington’s WhereH is any symmetric matrix anflj;} form the columns
guided Lanczogrocedureg[20], we first prime the Lanczos in the matrixQ for which Q'Q=1 andQ"HQ=T. In prac-
process by starting it with a block of orthonormal vectorstice, the SLA is implemented as an iterative process in the
that are already “leaning in the direction of” a few eigen- following way [12)].
vectors nearE. This is accomplished before entering the |Initialization:
Lanczos loop by simply performing a few iterations where
we apply a preconditioning operatp(E) to a set of vectors. j=0, qo=0, bo=1 and ro=qy.
We then start the Lanczos process with the new, precondi- i
tioned block. We see a marked increase in the number of lteration:

converged eigenvalues for a very modest increase in compu- Qj+1=r;/by,
tational time. Each newly generated set of Lanczos vectors is

explicitly reorthogonalized against all previously generated i—i+1,

ones. The result of this procedure is that a Cullum-

Willoughby-like test for ghost eigenvalues becomes invalid. aqujTqu ,

We determine which eigenvalues are good, and which are

bad, by comparing two lists of eigenvalues generated by one ri=Hag;—a;a;—b;_10;_1,
GFBLA run near a test eigenvalue. Test cases for matrices of

dimensionN=<3000 are presented. We review both Lanczos bj=|Ir;ll>.

algorithms and the Green-function filtewith an example of

its use, describe our approach for determining good and badeach pass through the iteration loop produces the matrix
eigenvalues, provide an example that illustrates when anelementsa; andb; in the tridiagonal representatior :

why to use the block variant of Lanczos, outline the precon-

ditioning loop, and detail our computational methods in Sec. a; by
II. The results of our tests for the convergence and stability b, a, b,
properties of our code and its application to they2-a, T= . b .
torsional transition in (KO); are presented in Sec. lll. Con- R i-1
clusions are given in Sec. IV. bj_1 a
Il. ALGORITHMS Because€Q"HQ=T, the eigenvalues dfi are equal to those

of T. Any number of efficient subroutines can then be used
to diagonalizeT with ease.

The single-vector Lanczos algorith(8LA) has been used The situation is more interesting in finite precision arith-
as an effective tool in reducing enormous sparse matrices tmetic. In this case, one must use care when implementing the

A. The single-vector Lanczos algorithm
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SLA without taking precautions to protect against the loss of B. The block Lanczos algorithm

orthogonality among successively generated vecfors. All of the procedural details of the SLA are preserved in
Although the algorithm provides fdocal orthogonalization  the plock Lanczos algorithm. In effect, matrix-vector mul-
of each q;,; against the previougq;}, roundoff error tiples are replaced by matrix-matrix multiples, and the result-
quickly leads to a set dfg;} in which not all the vectors are ant tridiagonal representation bff is now block tridiagonal.
linearly independentGlobal orthogonalization, in which  The main advantage of the BLA over the SLA is that multi-
each newq; is orthogonalized against every previous plicities in the eigenvalue spectrum are reportégdand B,
dj-1,-2,.., is usually avoided because in the past it has beeare both square matrices, as opposed to the scalar quantities
computationally demanding and expensive. a; andb; generated by the SLA. The dimensionffs equal
Two methods for preserving orthogonality among Lanc-to that ofB and should be determined by the minimum num-
zos vectors arselectiveand partial reorthogonalization. In  ber of multiplicities expected for an eigenvallg5—1§.
selectivereorthogonalizatior[13], the Lanczos process is  The salient features of the BLA are given below, follow-
stopped after a few recursions and th&L matrix T; is  ing the work of Grimes and co-workef48].
diagonalized. We examine the error bounds of an uncom- |nitialization:
puted Ritz vector(the eigenvalues and eigenvectors of the

Lanczos tridiagonal matrix are called Ritz values and Ritz Qo=0 and B;=0;

vectors, respectively, and are approximations to the true ei-

genvalues and eigenvectors Hf), which is given by the choose theNXM matrix R;; orthonormalize
product ofb;|s ;| (wheres; is the element in th&th row . _

and columnj of the eigenvector matrix obtained by diago- its columns to yieldQ;.

nalizing T)). if the quantity is sufficiently small, this indi-

cates that the Ritz vectgand its corresponding Ritz value lteration:

has converged. We compute the Ritz vector, store it and the j=1

Ritz value, and continue the Lanczos process. Now, we or- ’

thogonalize all successivel enerated Lanczos vectors T
g y 9 Uj=HQ;—~Q;_:B/,

against the converged Ritz vector. This method is attractive

because we need only store converged Ritz values and vec- A=QTU.

tors and a small subset of the Lanczos vectors. Further, mul- ! 1=

tiple Ritz values can and do converge: after the Ritz vector _
Ri+1=Uj—QjA),

corresponding to one Ritz value is “banishe@i the words
of Parlett and Scoff13]) from successive Lanczos vectors,
roundoff error will allow the next Ritz vectaiorthogonal to
the first ong to surface and thus the multiple copy of the Ritz
value in question is realized. This method requires multiple
runs to be made when more than one Ritz value convergeShereH is NXN. A andB areM X M andQ, R, andU are
therefore increasing computational demands. NXM dimensio;wal matrices Furth’er Whe’Fh i’s QR fac-
The partial reorthogonalizatiohl5] scheme monitors the tored intoQ andB, B is uppel; triangulz;r an@ is orthonor-

loss of orthogonality of the most recently computed Lanczo§nal We thus arrive at the block tridiagonal matib
vector, g;, among previously computed Lanczos vectors.Whi(':h looks like iR

When this tolerance is exceedeyl,is orthogonalized against
a set of Lanczos vectors within which the loss of orthogo- r A, B; g
nality was greatest. It has been shown that both approaches T
are effective in terms of convergence and dds&. B, Ay Bg
It turns out that we can still determine which eigenvalues T =
are multiple copies in the event that we do not reorthogonal-
ize at all. Cullum and Donathl19] proposed two methods, -1 Aj-1 B
both of which require additional computations. One result L B;
was that Ritz vectors corresponding to degenerate Ritz val-
ues will be linearly independent only up to the order of thatwhere, as in the case of the SLA, the Ritz valuesT odire
degeneracy. The rest of the Ritz vectors associated with thiapproximations to eigenvalues Bf.
Ritz value will be linearly dependent over the first set and As with the SLA, the loss of orthogonality among each
they correspond to ghosts in the eigenspectrum. Whichevesuccessively generate@ with the previous one is also a
method is eventually used, the SLA is most accurate wheproblem in the BLA. Again, selective reorthogonalization
computing extreme eigenvalues of the eigenvalue spectrunj13,15,18 has been implemented in practice to preserve lo-
The SLA is attractive in solving large eigenproblems be-cal, if not global, orthogonality in the desire to extract eigen-
cause one only needs to partially constrich order to yield  values of interest in their most accurate approximations to
excellent approximations tat least \ i, and A ,ax- Accu-  the eigenvalues of the original matri.
rate determination of the extreme eigenvalues of a matrix of We chose a block size dfl =2 for this study; all results
dimension 18 can usually be achieved after only 5 or so are for this case unless noted otherwise. The decision to use
SLA iterations. Interior eigenvalues also converge quickly ifa particular block size is detailed in the introduction to Sec.
the local gaps are relatively large. Il

do the orthogonal factorizatio®;,,Bj1=Rj;1,

j—i+1,

j o
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C. The Green-function filter 0 O
Several filters have been used in conjunction with the 0 a, b,
SLA: anexponential filterwhereH— f(H)=exd — BH] was T]* = . . b .
used to drive the Lanczos algoritHi1], a Gaussian deriva- B - i-1
tive filter, whereH — f(E) = (H—El)exd — B(H—EI)?] [22], bj_1 a

and anauxiliary operator f(E)=(EI—H)? [23], have all . . . : .
: : We diagonalize both matrices and examine the eigenvalues.
been shown to be effective for certain problefsscontrols The list of eigenvalues front; is called the good list here,

the width of the filtey. The block version of the filtered " . .
Lanczos algorithm has been used with a filter that approxif’md that fromTy the bad list.(Good and bad are simply

mates exp-H/A] (A is the interval that encompasses theIabels and reflect the fact tha@it is a more complete matrix

. . . thanT }.) If there exist multiple copies of an eigenvalue on
gi::]glt[gi]elgenspectrum of interpatith a Chebyshev poly- the good list and there is a cogio within machine preci-

sion) of the same eigenvalue on the bad list, we keep the
eigenvalue as good. However, if there is only one copy of an
. : o %igenvalue on the good list that match@gain, to within
_been greatly d|I_ated arourte. The result of_ using this filter  ,5chine precisionone on the bad list, we throw away that
is that these eigenvalues are resolved first and most acCligenvalue. Finally, lone eigenvalues on the good list that
rately; eigenvalues far frort are mapped to a cluster near have no match on the bad list are kept as good. Applying this
zero while eigenvalues neBrare mapped to very large posi- test to a block implementation of the Lanczos algorithm
tive or negative valuefl,3,18. Because of these properties, would be tricky, given that we would expect truly good ei-
the Green function is a superb filtéiowever, that does not genvalues to be present as single and multiple copies in both
mean that it is easy to implement in the computer ¢goBer  the good and bad lists.

this study, we apply the Green functionloby factoring the Our implementation of the BLA with full reorthogonal-
inverse filterf(E) “1=(El1—H) and then solving the linear ization sidesteps the problem of ghost eigenvalues. However,
algebra equatiofi(E) "1Qpew= Qoiq fOr Qpew at the start of  we are left with the matter of determining the following: at
each Lanczos stepQ.ew thus replaces the matrix-matrix what distance fronE do the eigenvalues cease to be suffi-

productHQ; in the first term of the BLA. ciently good approximations to the real eigenvalue$i6f
The eigenvalues of the block tridiagonal matrix are re- Our test follows exactly that proposed by Barbour and
lated to eigenvalues dfl by co-workers[25]. At the end ofj BLA recursions, we have
the (2)) X(2j) dimensional block tridiagonal matrix, which
A~Ag=E—1, D we denoteT; . Because we have dilated the spectrum around

E and explicitly reorthogonalized all of the successively gen-
erated sets of Lanczos vectors that constiflife we are
assured that ghosts are not present and that the Ritz values
that have converged so far are very close to real eigenvalues
of H, but only within a small region around. This state-

D. Testing for good and bad Ritz values ment is not true for eigenvalues that lie at a distance fiEom

We define a truncated Lanczos matrlx, ; as

where\y is an eigenvalue off, \y is a Ritz value, and |
is an eigenvalue of; .

The single-vector Lanczos algorithm is known to have

converged a Ritz value when more than one copy of that Ritz A, B;

value appears in the “final list” of eigenvalues of [14]. In -

fact, this property of the algorithm is naturally exploited by T .= B, Ay Bs

the loss of global orthogonality of successively generated -1 Bijl '

vectors, due to the propagation of roundoff error. An ap- B, A,
i- i-

proach for separating the good and bad eigenvalues was de-

veloped by Cullum and Willoughb}14]. It is important to  pjagonalizingT; and T, _; yields good and bad lists, which

note that this test need Only be invoked when SUCCGSSiVGIMoth contain degenerate and nondegenerate eigenva|ues_

generated Lanczos vecto@y are not fully reorthogonalized These numbers correspond to the shifted and inverted Ritz

against all previous ones. Further, this test was developed fQfa|yes: the backtransformed Ritz values are given by(Bg.

the SLA case: its implementation for the BLA would be yhere), is an eigenvalue from eithdf; or T;_;.

quite complex, as will be shown below. Given two lists of Ritz values, we then proceed in testing
The Cullum-Willoughby test, as implemented for the SLA for good eigenvalues. We first determine which eigenvalues

with no reorthogonalization, goes as follows: Affetanc- iy each list are degenerate, given a toleraagéthis is for

zos steps, we have the| tridiagonal matrix, denoted; . If  practical reasons, as we demonstrate in Sec. IlI: the algo-
we zero out the first row and column @f,, then we define a  rithm can resolve Ritz values that differ by less than 1 part in
new matrix calledT : 10%). If there exists more than one eigenvalue that differs
from another by less tha#y, then we call those eigenvalues
a; by degenerate. Each list is then collapsed to contain one copy of
b, a, b, each eigenvalue; the degeneracy of each is stored in another
Ti= . . b .|’ array to be referenced later. Finally, the good and bad lists

are compared. If an eigenvalue from the good list differs by
b1 a less thane, from an eigenvalue on the bad list, we report
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both the good eigenvalue and its degeneracy. Specific TABLE I. Eigenvalues of the Hekel matrix for GHg. Eigen-
choices forey and €, will be presented in Sec. Ill. values are forT; and T} . F represents a backtransformed eigen-
value of T} = — oo,
]

E. The Huckel matrix for benzene: a simple example

N T, N TF
Perhaps the easiest way to illustrate the advantages of ] :
using GFBLA over GFSLA is to examine the eigenvalues for 8.0 —12.2538
the system ofr -electron molecular orbitals in the benzene 6.21803 6.21803
(CgHg) molecule, as treated by ‘ldkel molecular orbital 6.0 6.93602
theory. No preconditioning steps were taken for these ex- 2.0 1.31776
amples. 1.98837 1.98837
Here, a system ofr electrons is considered to be delocal- —2.22045¢ 10 5 t

ized over the rigid framework of the molecule as dictated by
the o electrons. It is assumed that each carbon atom contrib-

utes some amount of its character to the molecular orbital, that pass the Cullum-Willoughby test are 8, 6, 2, and 0
which can be expressed as (rounded. Each one is accurately represented in value, but

information about degeneracies is missing. The implications
6 of using the SLA to solve eigenproblems where multiplici-
v =2 Cij b, ties in the eigenvalue spectrum exist are clear: not only will
=1 these degenerate states go undetected, there is also the pos-
sibility of misidentifying a bad eigenvalue for that of a true
one unless a test like that of Cullum-Willoughby is used.
Thus, the SLA fails to properly preserve the most important
information about systems where degeneracies exist.
However, if a full reorthogonalization is done at each
step, we are left with the task of imposing criteria that deter-
mine whether or not multiple copies of an eigenvalue are to
%e called degenerateATHEMATICA gives 0, 1.97, 2, 6, 6.01,
and 8 as the eigenvalues &f . We would most likely not
‘accept the pairgl1.97, 2 and (6, 6.0) as degenerate: this

) decision is shown to be valid upon diagonaliziig_,
and(1,6) elements are botjg but the(1,4) element is zero. : . . .
The resultant Hamiltonian matrix is real and symmetric. Di—WhICh yields 0, 1.91, 2, 6, and 8 as eigenvalues. Applying

; o ) . ur test for accepting Ritz values results in reporting 0, 2, 6,
rect diagonalization gives 4 energy levels, the middle two oﬁnd 8 as “good p g P g

which are both doubly degenerate. The model Hamiltonian We see that either method is problematic where degenera-

matrix is symbolically represented as cies are concerned: in the worst cae® reorthogonaliza-
- tion), degeneracies are missed entirely. In the best case

whereg; represents carbon ataiis p, atomic orbital and;;
is analogous to a “mixing coefficient.” The atomic orbital
basis se{¢;} is assumed to be orthonormal.

The 6X 6 Hamiltonian matrix is parametrized in terms of
two quantities and 8. The diagonal elements of the Hamil-
tonian matrix are denoted. In the case of benzene, all the
carbons are equivalent and thus all the diagonal matrix el
ments are equal. The off-diagonal elementdHofre given
by B, but only for nearest-neighbor interactions. Otherwise
the off-diagonal element is set to zero. For example(1h®

« p 0 0 0 5 (complete reorthogonalizatipndegeneracies are alluded to,
B a g 0 00 but not resolved with acceptable accuracy.
0 B a B 0 O
H=10 o B a B O 2. BLA results
0 00 B a B Conversely, the block Lanczos algorithm identifies the de-
LB 0 0 0 B af generate eigenvalues correctly, both in number and in quan-

tity. We used a block size of 62 for the matrixQ, knowing
1. SLA results in advance that the maximum degeneracy to be expected in

When the GESLA is used to reduce thédKal matrix for this case was 2. After 3 iterations, the block algorithm yields

benzene to a tridiagonal form, it does so by a series okhe correct values for energie, through E,, giving

matrix-vector multiplications and thus does not build in any rounded X, =0, A;=X3=2, Ay=As=6, andrs=8. Note

information about the degeneracy of the energy levels in thg::t ?siggrsti:n%;?irzie;gﬁt;%r;gsg\?e?Onihgrggsdurggafes'
system. We letv=4 andB=2 in this example, knowing that y 9 v

the corresponding eigenvalues should be 0, 2, 2, 6, 6, and ﬁq As long asQ is at least of dimensiohl X M (whereN is

We shifted the eigenvalue spectrum by lettifig=3.5 e dimension of the original matrix arM is the maximum
Implementing the variation given above, we did 6 iterationsnumber of multiple eigenvalues expectethe BLA returns

“by hand” with MATHEMATICA. Because this example was the proper number of eigenvalues as well as their values.

done without reorthogonalization of each newly generated
Lanczos vector against all previous ones, we must invoke the
Cullum-Willoughby test for spurious eigenvalues before re- Roy and Carringtorf20] proposed a method where the
porting our final list of converged eigenvalues. The results of anczos process is ““guided” to accelerate the convergence
diagonalizingT; and T]* are given in Table |, where the of Ritz values near an eigenvalue of interest. The authors
eigenvalues ofT; and T]?* have been backtransformed ac- investigated a spectral transform methpgahich uses a
cording to the prescription given in E€L). The eigenvalues Gaussian filter foff (H) to drive the Lanczos methdénd a

F. Preconditioning the initial Lanczos vectors
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scheme for computing an optimized starting vector by using p(E)PX;=Q,,

a Gaussian-windowed Fourier-transform function fipr.

The latter of these methods was found to be the most attrac-

tive. The approach detailed in our work couples the spectralvhere an excellent choice would pg¢E)=G(E) in cases

transform driver with ablock of optimized initial Lanczos whereEl—H can be factored an¥, is any block of ortho-

vectors. normal column vectors. When this process is finished, we
The BLA is initiated with a set of orthonormal column then start the Lanczos loop with the preconditioned block

vectors[ 18], which we refer to a®,. A common choice is Q. For a given number of Lanczos steps, even one loop

one where each basis function is equally represented, and tlierough the preconditioner yields more converged eigenval-

inner product of the vectors is zero. We initially worked with yes than without it. We refer to this scheme as PC-GFBLA.

the NX 2 block, However, there will certainly be cases where we just can-
not factorEl —H because of its size. We can estim&éE)
NN 1N and then apply it several times %, through a series of
1N —14N matrix-matrix multiplications to arrive at a preconditioned

Q1= 1N YN |’ starting block(this method is called the estimated inverse
: : GFBLA, or EI-GFBLA), now denotedQ;. One method for

generating a model Green function is as follows. Define a
noting that this combination is suitable only whé\tés even  submatrixS of EI—H of dimensionp, which is centered
(which can easily be arranged for any cagélling Q; with  around the diagonal elements closesEtoWe approximate
randomly generated numbers and then doil@Rafactoriza-  the diagonal elements @(E) that fall outside the borders

tion is also acceptable. Howevemy waywe arbitrarily fill  of S by (EI—H;) 1. Any element of EI—H) that is not
Q; is unfavorable for accelerating the convergence of thewithin S or on the diagonal is set to zer§;is directly in-
Lanczos process. verted. The resultant estimated inver‘(E), becomes

Therefore, it makes sense to preconditinso that, ina p(E) and is used for the preconditioning. The matrix-matrix
sense, the vectors it contains are already “leaning” in theproductGO(E)Qj in the Lanczos loop would be constructed
direction of the eigenvectors aroufid We can then invest a by using a linear system solvgsuch as GMRESgeneral-
portion of the computational time and resources saved bized minimun residual[26] or DIIS (direct inversion in the
reducing the number of Lanczos iterations in other tasksiterative subspagd27]] or by using perturbative matrix par-
such as factorindel —H or performing detailed analyses on titioning technique$1] at the beginning of each loop. Below,

the backtransformed Ritz values and vectors. we show a sparse X010 matrix from whichG°(E) is built
The preconditioning operatqr(E) acts upon a primitive for E=3.5 andp=4. The submatrixS encompasses the
initial block, X;, P times: (5,5)—(8,8) elements of (E):
|
1 0 0 0 05 0 0 0 0 0.25
0O 1 0 0 o 0O 0 0 O o
0O 0 2 0 O 01 0 0 0 o1
0O 0 0 2 O 0O 0 0 0 O
05 0 0 0 3 0050 0O 0 O
H=l' 0 0 010005 3 0010 0]
0O 0 0O 0 O 0 4 0 0 O
0O 0 0O 0 o 01 0 4 0 O
0O 0 0 o0 O 0 0 0O 5 o0
L025 0 01 0 O 0O 0 0 0O 5
04 O 0 0 0 0 0 0 0 0 7
0 04 O 0 0 0 0 0 0 0
0O O 066 O 0 0 0 0 0 0
0 O 0 0.66 0 0 0 0 0 0
GO(E) = 0 O 0 0 202 019 0 -0.04 0 0
0 O 0 0 019 194 0 -0.38 0 0
0 O 0 0 0 0 -2 0 0 0
0 O 0 0 -004 -038 0 -—-192 0 0
0 O 0 0 0 0 0 0 —0.66 0
L0 O 0 0 0 0 0 0 0 —0.66]

The quality of the approximation is largely a function of the size of the matrix elemertistbt are excluded frors, the
smaller block that we choose to directly invert. This is illustrated for the present case by exa@MEYEl—H):
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1 0 O 0 0 0 0 O 0 0 T
01 o 0 0 0 0 o 0 0
0 0 099 O 0 0 0 o 0 0
0 0 0 099 0 0 0 O 0 0
GO(E)(El—H)= 0 0 O 0 101 -0.009 0 O 0 0
0 0 O 0 —-00095 097 O 0038 O 0
0 0 O 0 0 0 1 0 0 0
0 0 O 0 0 0.038 0 096 O 0
0 0 O 0 0 0 0 0 09 o0

L0 0 O 0 0 0 0 0 0 0.99]

|
G. Computational details With each pass through the Lanczos loop, we create a set

We followed the basic outline of Grimes and co-workers®f VECtorsQ; . In order to perform our complete reorthogo-
[18] in implementing the block Lanczos code. The Green-nalization at each step, we store the new set after step |
function filter scheme follows that of Wydtt] and Ericsson ~ 2POVe.
and Ruh€g3]. The entire Hamiltonian matrix is factored in
the present work: we were able to run test casesNor
<3000 on our IBM RS-6000/370 workstation. All matrix
operations are handled by subroutines from BL(Ssic lin- The focus of this study is to find an efficient way to ac-
ear algebra subprograinsind LAPACK (linear algebra curately extract eigensystem information from a Hamiltonian
package [28], with the exception of the modified Gram- matrix that may contain degeneraci@ere, limited to a two-
Schmidt andQR routines, which were hand coded for future fold degeneracy We are therefore concerned with the fol-
ease in parallelizing the code. An outline of our code is giverlowing issues: how well do the Ritz values and Ritz vectors
below. To initialize the procedure, we s@=B;=0 and agree with direct diagonalization results? How many eigen-
defineX; to have orthonormal columns. pairs do we convergggiven e, and e4) for a given number
A. Form (El—H) of Lanczos steps? Is there a significant advantage to precon-

' ' ditioning? And finally, how much time does it take to con-
B. Do an LU factorization of EI —H). Verge an a(_:ceptable number_ of eigenp_airs? .

Start preconditioning loopP=1,2,... . _The ch0|_ce of an approprite block siké is a co_n5|der-

ation when implementing the block Lanczos algorithm. Con-

[ll. COMPUTATIONAL RESULTS

C. Solvep(E)"X;=Q; for Q,. ceivably, one could reduce the number of Lanczos steps by
End preconditioning loop. increasing the size o¥: for instance, instead of doing 10
Start Lanczos loopi=1,2,... . Lanczos steps wittM =2, do 5 steps wittM=4. We are

then faced with solving a linear system with more right-hand

D. GivenQ;, form V;=G(E)Q; by solving sides than before, but we do not have to do it as many times
(EI=H)V;=Q;. as withM =2. The matrix-matrix multiplications within the

Lanczos loop take more time, but again, we do not do as

E.U;=V; —Qj_lBjT. many passes through the loop as with the smaller block size.

Golub and Underwoofil6] conclude “it is best to choose

F.A=Q/U;. the block size at least as large as the largest multiplicity

possessed by any eigenvalue” ldf Ruhe[17] agreed, say-

G.Rj11=Uj=QjA;. ing that the block size “should be chosen as the number of

independent eigenvectors sought to any cluster of interesting
eigenvalues.” Grimes and co-workef48] state that “in
general, it is best to choose a block size as large as the largest
expected multiplicity if eigenvalues of moderate multiplici-
ties are expected. This is particularly important if many clus-
ters of eigenvalues are expected,” as in our test cases. They
found that the cost of a Lanczos run initially decreases with
K. Test each eigenvalue list for degeneracies: tolerance fadocreasing block sizefewer factorizations, linear system
tor 4. solves, and matrix-matrix multiplicatiops but then in-
creaseshecause the dimension of the matrix containing the
L. Collapse each list to one copy of each eigenvalue, retainkanczos vectors also increases. It is also noted that maintain-
ing degeneracy. ing a degree of orthogonalifgemiorthogonality i 18], full
orthogonality in the present studgind backtransforming the
M. Keep eigenvalues that appear on both lists: tolerance faditz vectors are substantial contributors to the overall cost.
tor €. They concluded that they did not “see an optimal choice for

H. Do a QR factorizationR;; 1=Q; ;1B 1.

|. Orthogonalize columns d; ., against all previou®); .
End Lanczos loop.

J. Compute eigenvalues for both andT; ;.
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block size.” Because we will always know the maximum  TABLE Il. Comparison of select Ritz values nefr=56.289.
expected multiplicity for a Hamiltonian matrix generated to N=500,L=20, p=1%, andes=10""°. Ritz values are nondegen-
describe a system of a given symmetry, we can follow theerate except where noted by f, which are twofold degenerate as
advice presented above and resthitto equal that quantity. determined byey. All lists were subjected to the same sorting

The following subsections describe the model Hamil-Criteria. _E_ige_nvalues foH are from a direct diagonalization. No
tonian, the convergence of Ritz values, and how we comput@réconditioning was used for these cases.

Ritz vectors ofH. We demonstrate that Ritz values com-
puted with the GFBLA agree extremely well with direct re-

AN T

)\, Tj*l

N H

sults. When preconditioning steps are invoked, the number
of converged Ritz values increases substantially at an almost
unnoticeable increase in computational time. The PC-
GFBLA is shown to be superior to the EI-GFBL{or cases
whereEl—H can be factored The effects of precondition-
ing are evident in plots of expansion coefficients for several
Lanczos vectors in the eigenvector basiglofobtained from

a direct diagonalization Ritz vectors are tested by calculat-
ing the overlap coefficients for each Ritz vector in the entire
eigenvector matrix ofH. We show that preconditioning
greatly enhances not only the number of converged good
Ritz values, but also their corresponding Ritz vec{@@].

51.013538 70
52.996 856 31
52.999 667 62
54.998 804 31
54.999 981 14

$56.999 998 04

56.999 999 96

$58.999 999 94

58.999 999 99
60.999 988 41
61.003 857 44
62.995 561 38

51.013 538 70
52.996 856 31
52.999 667 62
54.998 804 31
54.999 981 14
$56.999 998 04
56.999 999 96
$58.999 999 94
58.999 999 99
60.999 988 41
61.003 857 44
62.995 562 11

51.013 538 70
52.996 856 31
52.999 667 62
54.998 804 31
54.999 981 14
56.999 998 04
56.999 999 96
58.999 999 94
58.999 999 99
60.999 988 41
61.003 857 44
62.995 561 30

Finally, we comment on results presented in the following
sections concerning the timing of our code on the RS-6000.
The program readable system clock reports execution times

to 0.1 s. For this reason, the execution times reported in tht® the test for multiplicity; the direct results, in the last col-
present study are only valid to within 0.1 s. umn, have only been sorted. The preconditioning step was

not invoked for this example. Clearly, degeneracy is in the
eye of the beholder: only the imposition ef results in our
code declaring two Ritz values as degenerate. Without this
In practice, we will be extracting eigenvalues from condition, the code resolves the nearly degenerate Ritz val-
Hamiltonian matrices that are very sparse: typically, up toyes with the same accuracy as it does the other Ritz values.
about 6% of the matrix elements will be nonzero. Furtheryyhen we impose, (for this study, we chose 189, the list
the off-diagonal elements are usually between 0.01% angh Table Il yields 10 acceptable eigenvalues, all of which
0.1% of the smallest diagonal element. Preliminary tests ofgree with direct diagonalization results to at least 8 decimal
the code showed that the number of converged Ritz value§|acesl
was not a strong function of coupling strength. We chose the Four variations of the block Lanczos code were tested to
following model for this study: illustrate the advantages of filtering and preconditionifip:
no filter and no preconditioningji) filter and no precondi-
tioning; (iii ) preconditioning and no filter; an@v) precondi-
tioning and filter. We chos&=1000, p=1%, €,=10 1°,
andey=10"° for the tests. Each case was timed based on the
Hi,jze‘lm, first appearance of converged Ritz values. The results are
given in Table lll. For each case given above, every pass
wherei#j andRe[0,1) as generated by a random numberthrough the Lanczos loop involves a minimum of 6 matrix-
generatorE and the placement of off-diagonal elements arematrix multiplications, aQR factorization, and a modified
also randomly determined. Because we are only interested iBram-Schmidt operation. The last two operations scale as
the interior region of the eigenspectrum, we enforce the shifN?; the matrix-matrix multiplications are much more costly,
to beE=(N/2)R, Re[0,1) as generated by a random num- scaling asN® [29]. If we precondition or filter, we introduce
ber generator.

A. Model Hamiltonian

Hii=Hii1j+1=1,

wherei=1,N in increments of 2

_ TABLE Ill. Timing for different implementations of precondi-
B. Convergence of Ritz values tioning and filtering with the block Lanczos algorithm. The number

For this study, we ran the GFBLA code as describedOf Lanczos steps& is given for the first appearance of converged
’ H — — —10"5 —10n"10

above with the option of comparing Ritz values and RitzRitz values.N=1000,p=1%, &;=10"", and &=10"""for all
vectors with those from a direct diagonalizationtbf which ~ ¢35eSP =10 for (iii) and(iv). Time is user time, given by execut-
is obtained by calling DSPEVLAPACK [28]). The direct ing /usr/bin/time-p a.out on the RS-6000; error+i$.1 s.
list is subjected to the same sorting criteria as the GFBLAMethod L t(9)
lists. Hence, we can see how well our computed eigenvalues
and degeneracies match the results of a direct diagonaliz&) No filter, no preconditioning 114 94.8

tion. Presented in Table Il are the results of a small test cas@) Filter, no preconditioning 8 13.7
(N=500) where we have reported several converged eigeniii) No filter, preconditioning 3 12.4
values around for the matricesT;, T;_;, andH. The full  (iv) Filter, preconditioning 2 124

and truncated Lanczos eigenvalue lists have been subjected
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TABLE IV. Timing and convergence: PC-GFBLA vs ElI- TABLE V. Block size vs convergence for EI-GFBLA.=10,
GFBLA. N=500,L=20, p=1%, €,=10"°, ande,=10"2°. The p=1%, ¢,=10°, ande,=10"*°. For N=1000,E=500.056. For
directly inverted block size for the EI-GFBLA was fixed at 100 and N=2000, E=1000.056.P=10 for all cases. Time is user time,
E=250.056. Time is user time, given by executing /usr/bin/time-pgiven by executing /usr/bin/time-p a.out on the RS-6000; error is
a.out on the RS-6000; error s0.1 s. Values in parentheses are for +0.1s.
the EI-GFBLA cases.

p No. converged t ()
P No. converged t (9
N=1000

0 10 3.8 100 4 49.5
1 12 (12 3.8 (8.6 200 4 49.7
2 12 (12 3.9 (8.6 300 4 50.8
3 12 (12 3.9 (8.5 400 4 52.8
4 14 (12 3.8 (8.5 500 4 55.3
5 14 (12 4.0 (8.6) 600 4 57.2
6 16 (12 4.0 (8.7 700 4 61.7
7 16 (12 4.0 (8.7 800 5 67.7
8 16 (12 4.0 (8.9 900 6 74.9
9 16 (12 4.1 (8.9 1000 8 86.1

10 18 (11) 4.2 (8.9

2000

1000 4 139.4
a factorization step and a linear system solve step, each of 1200 4 149.3
which requireN® operations. It should be noted, however, 1400 4 185.9
that we only need to factor once. Further, each pass through 1600 4 259.7
the Lanczos loop is as costly as 7 preconditioning steps. 1700 4 261.7
Given that we are interested in some interior region of the 1800 5 295.0
eigenspectrum, we can dismiss meth@dsnd (iii ) because 1900 8 331.8
only the extreme Ritz values and vectors will converge when 2000 8 369.2

we do relatively few Lanczos iteratiorigterior eigenvalues
will converge eventually, but the cost of doing so many it-
erations makes the approach unattragtive are left with  with a constant block sizp (accompanied by an increase in
deciding which of methodsii) (GFBLA) or (iv) (PC- computational timg The PC-GFBLA converges 80% more
GFBLA) is more effective. As seen in Table Ill, 10 precon- Ritz values withP=10 than forP=0, with only an 11%
ditioning steps reduce the number of Lanczos iterations reicrease in computational time. A 42% increase in time for
guired to resolve the first appearing converged Ritz values bthe EI-GFBLA leads to a gain of only one more Ritz value.
a factor of 4. The savings in terms of computational time However, this is not generally the case, since we would
amounts to slightly more than 10%. But why, one might askmakep, the dimension of the submatr&that gets directly
should we precondition at all? If we target a certain quantityinverted, greater thai/5 for practical purposes. Still, the
of Ritz values we want converged, certainly we can just donumber of converged Ritz values is not as strong a function
more Lanczos steps. For example, it would seem reasonabié the number of preconditioning step®, for the EI-
to demand 50 converged Ritz values for a single run of th&GFBLA as it is of the dimension db. In Table V, we show
code. For theN=1000 case used above, the PC-GFBLAthat no advantage is gained by using the EI-GFBLA ustil
converges 50 Ritz values in 43(=50 here; the GFBLA is of dimension(at least p<0.8N. If one is willing (or is
needs 7 more Lanczos steps to reach the same goal, forferced to invest the time required for the EI-GFBLA, one
total cost of 48 s. The time demand is now at more than 11%mneed not sacrifice accuracy: Table VI compares Ritz values
When this savings is taken with the improvement seen in thebtained with this method with those from a direct diagonal-
convergence of Ritz vectoréSec. Ill D, below, the PC- ization. Given the small return on the time investment, and
GFBLA is clearly superior to the GFBLA. the fact that the full reorthogonalization scheme already
We also see a noticeable change in the extent of convegives us an acceptable number of converged Ritz values, the
gence when preconditioning steps are invokee# denote EI-GFBLA is hardly an attractive preconditioner.
the number of preconditioning steps By. When using the The PC-GFBLA is clearly superior if the problem is
GFBLA with small (N<3000) matrices, it makes sense to small. The sparsity of the matrix appears to have little, if
factor the whole shifted matrix and precondition by solvingany, effect on convergenadable VII) (the same was true
the linear algebra problem that is also solved with eactor EI-GFBLA). Test cases for 569N<3000 show that for
Lanczos stepthe PC-GFBLA approagh The EI-GFBLA 10 preconditioning steps, the most we increase user time is
scheme, useful for situations where factoring is not possibleyy 16% (which, for the case in question, converges four
is slower than the PC-GFBLA and does not increase convettimes the number of Ritz values that we would get if we did
gence as quickly as PC-GFBLA. Table IV illustrates thisnot precondition The largest return on our investment was
point. We actually see aecreasein the number of con- for the N=3000 case, where time increased 5% and we con-
verged Ritz values for th&® =10 step for the EI-GFBLA verged 8 Ritz values instead of(Zable VIII).
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TABLE VI. Converged eigenvalues: EI-GFBLA vs direcdtl TABLE VIII. Timing and convergence: PC-GFBLA.=10, p
=1000,L=10, p=1%, €;,=10"°, =10"1% E=500.056, and =1%, ¢;=10"°, ¢=10"1% andP=10. Numbers in parentheses
P=10. The six Ritz values converged for the EI-GFBLA in 75.0 s. are for GFBLA with no preconditioning. Time is user time, given
The block sizep=900 for the submatri¥s. Ritz values noted by ¥ by executing /usr/bin/time-p a.out on the RS-6000; errat &1 s.
converged when the preconditioning steps were left out (
=47.8s). Time is user time, given by executing /usr/bin/time-p N Converged t (9
a.out on the RS-6000: error is0.1 s.

500 8(2) 2.9 (2.5
EI-GFBLA Direct 1000 8(2) 14.6 (13.2
1500 6 (2 39.8 (36.2
497.001 403 05 497.001 403 05 2000 6(2) 84.9 (78.1)
1498.999 074 54 498.999 074 54 2500 8(2) 157.1 (140.2
$499.001 448 02 499.001 448 02 3000 8(2) 323.6 (308.5
$500.999 788 41 500.999 788 41
$501.001 406 92 501.001 406 92
502.984 602 22 502.984 602 22
¢i=(QZ)? (i=1,2,..N), ()
The excellent agreement between Ritz values returneq,herer is a Lanczos vector arid; is an eigenvector off.
from the PC-GFBLA and a direct diagonalizationtfattest If we do not precondition, thef; is simply
to the advantage of using both the Green-function filter and
full reorthogonalization at each Lanczos step. The ghost ei- 1N

genvalue problem is avoided, while the block structure of the
BLA allows us to resolve degenerataccording to our cri- _ 1NN
teria), nearly degenerate, and nondegenerate eigenvalues of N
H nearE. If EI—H can be factored, then the advantages of :
preconditioning are maximized in terms of the number of

converged Ritz values. If we fix the number of Ritz vaIueshcWe use Eq.(2) to plotc; for Q,, as is shown in Fig. (B)
. . ] L] . 1

i 0 i ; T2 =
we qut to see converged, we must 'nVESt.l.O/.O more tlm_e 'We see that the expansion coefficient is more or less a con-
resolving these quantities without preconditioning than WlthStant over the entire range of eigenvect@s. That is, there

preconditioning. IfEI—H cannot be factored, precondition- are almost equal amounts of every eigenvectordh Q
ing can still be done, but the return on user time invested P& hich is not a good way to start if we want to make thel ’most

converged Ritz values makes this meth&d-GFBLA) less of a few Lanczos steps. The case shown in Fig) Is re-
attractive than PC-GFBLA. plotted in Fig. 1b), with the important modification that we
have done one preconditioning step. Not only bagrown
in the region around eigenvectors n&arbutc; is now much

The effect of using a preconditioner is most clearly illus- smaller for every eigenvector 6f some distance away from
trated when we plot the expansion coefficients of selecE than it was previously—15<In ¢=<—12 now, whereas
Lanczos vectors in the eigenvector basisHof For a given  In ¢=—7 without preconditioning.

C. Eigenvector composition of the Lanczos vectors

number of Lanczos recursions, we have arNX2L array We can also examine other Lanczos vectors fi{@}.
of orthonormal Lanczos vector§Q, }. For Lanczos vector Each Lanczos step gives us a set of two new vecfs,.
j, we let The vectors are orthogonal to each other and to all previ-

ously generated Lanczos vectors. There should be no com-
ponent of any converged eigenvectahich would be asso-

TABLE VII. Converged Ritz values for the PC-GFBLA: num- . . . .
g ciated with a previous vector or set of vect@s e,ioud i

ber of preconditioning stepdP vs sparsity(p) of H. N=1000,L

=20, 4=10"5, and e, =101 Qnew- As successiv), .S are formed, we should be work-
ing our way out fromE and into the surrounding eigenspec-
Plp 1% 5% 10% trum. Figures 2a)—2(d) further illustrate this point: expan-
sion coefficients forQ;, Qs, Qip, and Qg in the
0 10 10 10 eigenvector basis are shown, wheke=1000, L=20, p
1 10 10 10 =1% and the number of preconditioning steps,is fixed at
2 12 12 12 10. A sharp spike in Fig. (&) corresponds tdQ; having
3 12 12 12 significant components of an eigenvector whose eigenvalue
4 14 14 14 is closest toE (here,E=112.579. Figure Zb) shows the
5 14 14 14 peak arouncE widening asQs now “picks out” eigenvec-
6 14 15 14 tors a little further from the previously converged ones. This
7 16 16 16 broadening continues as we look@i, [Fig. 2(c)] and Qg4
8 16 16 16 [Fig. 2d)], the last Lanczos vector for this test case. Besides
9 18 18 18 the growing area being covered arouBd we also see the
10 18 18 18 growth of a deep trough in the large peak. This feature is a

remnant of our full reorthogonalization scheme: the width of
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T T T T T T T T T
1 I | . A ) | il |
T 1 ™ v ki T i | T l
-8 | 4
-10 | -
—12 + .
% -14 | 4
—16 | 4
-18 | -
-20 |- .
1 1 ] 1 i 1 "l ] 1
100 200 300 400 500 600 700 800 900 FIG. 1. Expansion coefficients for Lanczos
@ eigenvector index vector Q, in the eigenvectors ofl: (a) no pre-
T T ; . : . . . ; conditioning P=0), (b) one preconditioning
step P=1). N=1000,L=20, andp=1%.
-5 | 4
—10 | 4
% -15 - -
=20 | 4
25 4
1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900
(b) eigenvector index

the trough describes a bandwidth, within which we have connotedZ;), as determined from a direct diagonalization. The

verged all the eigenvectors closestEdor a given number
of Lanczos steps.

D. Computation of Ritz vectors from the Lanczos vectors

After a number of Lanczos stepd ), we have con-
structed the (R) X (2L) projection of G(E) in the Lanczos
basis:

Q'G(E)Q=T. ()
Diagonalizing the block tridiagonal matrik yields
SITS=A=T=9\S'
and, using Eq(3), we see that
(Q9TG(E)(QS)=A.
Thus,V=QSis theNX 2L matrix of Ritz vectors ofG(E).

better our methods, the closer to unity will be what we define
ass;, the overlap coefficient:

N
Si= 121 VlTZJ . (4)

Further, if V; is very close to one eigenvector and nearly
orthogonal to the others,

|si|~1 5

for anyi (we take the absolute value because the phase of the
eigenvector varigs Because of the global reorthogonaliza-
tion, we would expect most to be close to unity for some
distance away fronZ g, .

The effect of preconditioning is immediately noticeable if
we plot|s;| for different Ritz vectorsv;. In Fig. 3a), we
show such a plot for a case wheh=1000, L=20, p

It is instructive to look at the overlap of a Ritz vector =1%, €4=10°, =10 1° andP=0 (that is, no precon-

(denotedV;) versus the corresponding eigenvectoHofde-

ditioning). Working our way in from the ends of the plot, we
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-20 } -
40 | E
g
-60 .
-80 g
100 200 300 400 500 600 700 800 900 FIG. 2. Expansion coefficients of precondi-
@) eigenvector index tioned Lanczos vector®; in the eigenvectors of
T T T T T T T T T H: (a) Ql! (b) Qs, (C) QlO! (d) Q40. N:].OOO,
L=20, p=1%, andP=10.
-20 | i
—40 .
g
60 | -
80 F
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(b) eigenvector index

see that/s;|~1 for only about 17 of our backtransformed use the block variarjtL8] to monitor the convergence of Ritz
Ritz vectors(the ends of the plot correspond to convergedvalues and their associated Ritz vectors. Recalling the nota-
eigenvectors closest to the shiffhe width of the middle tion used above, we denote a backtransformed Ritz pair as
region of the plot indicates that marfglightly over 20 of  \g, V. The quality of the approximation of a Ritz pair to the
our backtransformed Ritz vectors have significant compotrue, corresponding eigenpair bif is [18]

nents of the other eigenvectors: predictably, these Ritz vec-

tors are at some distance away frafy,;. The picture [HV;=ViNjwll2=1Bj+1Sjl2, (6)
changes when we look at Fig(l8, which was produced
under the same conditions as Figa3with the exception
that 10 preconditioning steps were takeR={10). Now,
about 25 backtransformed eigenvectors satisfy(Bg.a di-

where the lasM elements of th¢th column ofS are used in
Eq. (6) (here,M=2). The 2X2 matrix Bj,, is not used in

rect result of preconditioning. There is now a wider intervalformingT but is computed during the last Lanczos recursion
P 9. before we terminate the run. Equati®) is more useful if

aroundE within which our backtransformed Ritz vectors are we implement the Lanczos algorithm without shifing and

pure (i.e., they have very small components of the Otherinverting: we introduce error by backtransforming Ritz val-
eigenvectors that encompass the spacH pof

ues and vectors and need to account for these sources accord-
ingly. Following Ericsson and RuH&], we can instead use
E. Error bounds on eigenpairs of T the eigenvalue error bound:

There is(at least one more test that illustrates the quality

of our preconditioning method. Similar to the calculations 1B, ,Si|

. . . . _ i+19512

performed before computing a Ritz vector in the selective Y=IN\g—AglS———
reorthogonalization scheme of Parlett and SEb#, we can i(m

: )
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FIG. 2 (Continued.
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where\t is an eigenvalue ofl (not yet backtransformed previous sections, the effect is clearly seen: Figufa) 4
Equation(7) tells us that either large values ®f (which are  shows a plot of Iny; versus the index on the eigenvalue
located neaE) or small values ofiB;. 1 S|, will minimize ~ \;(T) for the case where no preconditioning steps were
v, the difference between an eigenvaluetbfand a com- taken, and Fig. @) illustrates how muchy; decreases when
puted Ritz value. P=10. Because we save all our Lanczos vectors and can
In Sec. Il D, we plotted|s;| for {V;}, the set of Ritz quickly and easily compute the eigenvalues and eigenvectors
vectors, and showed that the Ritz vectors near the “edges®f T, the test outlined above is available for our use at almost
of the plots[Figs. 3a) and 3b)] correspond to very good no extra computing cost. If we chooseyahat is acceptable
approximations of eigenvectors &f. Based upon the rela- for the range of eigenpairs &f we wish to compute, then we
tionship expressed in E¢6), this is one way of saying that if have a control on convergence that double checks our
the lastM components of the eigenvectSy are small, then choices ofey and €, . For instance, if we were to accept as
the Ritz vector that is constructed with thtand the cor- converged a Ritz eigenpair for which 4a=—10, then the 10
responding set of Lanczos vectors has converged. We nopreconditioning steps yield 18 acceptable eigenvalsethat
ask the following: what are the minimum and maximum val-would be backtransformed and reported as good approxima-
ues that the left-hand side of E(f) can take? If we know tions (along with their corresponding Ritz vectprto an
the answer to this question, then we have yet another to@igenpair ofH. If we neglect to precondition, only 14 eigen-
available for determining the accuracy of our methods andialues ofT (and thus 14 eigenvectors @) meet our crite-
the efficacy of our preconditioning strategy. rion. Recalling the results presented in Table VII, in which
The two cases used to plot FiggaBand(b) are now used 10 and 18 Ritz values were reported as acceptable for the
to show how the error boundy, is improved upon precon- P=0 andP=10 cases, respectively, we see that our choice
ditioning the starting block of Lanczos vectors. As in theof vy is too big. If we make Iny<—11, then we have agree-
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Isl

(@) Ritz vector index FIG. 3. Overlap coefficients of Ritz vectors
{V}: (@ P=0; (b) P=10. N=1000,L=20, p
' ' ' ' ' ' ' =1%, =10 %, andey=1075.
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(b) Ritz vector index

ment with the results presented in Table VII. This procedure In its equilibrium geometry, three OH bonds tend to lie in
can be used either in-line as in the selective reorthogonalizahe plane defined by the three O atoms, which lie near the
tion schemg13] or, as presented here, as a final check orvertices of an equilateral triangle. In the equilibrium struc-

how many eigenpairs of are acceptable Ritz pairs. ture[38,39,41, the other three H atoms lie with two on one
side and one on the opposite side of the oxygen plane, such
F. The water trimer as the up-up-down geometry, denotedd. One of the H
1. Introduction and model atoms, say the first one that is pointed up, can flip to the

| ber of ) | and th ical ddown position by rotating about the planar O-H bond, lead-
Recently, a number of experimental and theoretical stu ing to the isoenergetic structure denotbdd. Other hydro-

e s s e 10 s about e planar O+ b ead 0 3 e
P 9 minima potential energy surface. These low-frequency

between small water clusters, characterized by a few vibra]é drogen-atom torsional energy levels are labeded
tional degrees of freedom, and bulk water, whose propertie ydrogen-atom forsional energy 1evels are lab&gd a,,
ore,, according to the irreducible representations of the

are frequently modelled by statistical mechanics. The recerfto
far-infrared studies by Saykally and co-workers on the9OUPCan. .
vibration-rotation-torsion transitions of water clusters in jet- AS an application of the PC-GFBLA to a nontrivial prob-
cooled expansions have provided a wealth of data that ma{¢m in molecular spectroscopy, we will calculate the
lead to a greatly improved understanding of the intermolecu2€q—2ay torsional transition for the water trimer. The

lar potential surfaces governing the cluster dynani@g@—  representation is doubly degeneratg; is nondegenerate.

36]. The low-frequency quantum tunneling and torsional ex-Details concerning the coordinates, Hamiltonian operator,
citations of the water trimefH,0);, have been the focus of pseudospectral basis sets, and symmetry adaptation are pre-
some of the studieg36,37). sented in the study by Guiang and Wy@2]. However, for



56 ENHANCED MATRIX SPECTROSCOPY: TH... 4851

—40 E
g
60 | g
-80 | .
-100 | -
: w0 5 0 25 0 %
(a) eigenvalue index FIG. 4. Error bounds font: (@) P=0; (b)
P=10. N=1000, L=20, p=1%, =101
' ' ' ' ' ' ' ande;=10"°.
0
=20 -
—40 —
s
-60 E
-80 E
-100 <
5 T
(b) eigenvalue index
completeness, a brief overview is presented here. with each of these points is a pseudospectral basis function,
The three torsional coordinates are denofgd, x».xs}  fj(x«). The functions that were used are defined in Vincke
and the torsional Hamiltonian operator is given[4g] et al.[46]. Finally, from the large direct product basis geft

dimensionNg), projection operatorf47] were used to build

92 92 9? four symmetry adapted subspaces, one for each of the irre-
H=-B|-—+ =+ ——|+V(x1.x2.X3) ducible representations df3,. Only the e, and a, sub-
dx1 Ixz IX3 , : g 9
spaces are considered in the present study.
whereB is an effective torsional constant aN@x1,x2.x3) 2. Results

is the three-dimensional torsional potential energy surface. I gach of the subspaces was examined for two basis set
order to develop this potential surface, a serie@lofinitio  sjzes, The resulting Hamiltonian matrices were of dimension
electronic structure calculations were perfornié?] and the N =2280,3080 for the twe, cases andN=1150,1551 for
results were corrected for basis set superposition error byhe correspondingg, Caseg. The PC-GFBLA parameters
employing the counterpoise correction mettjd@,44. The  ere set toP= 10, €,=10"1° and e4=10"%; Ritz values
corrected energies were then fit to an 11-parameter funcand Ritz vectors were computed. We were able to converge
tional form, the CKL (Cieplak-Kollman-Lybranyl potential ~ the needed eigenvalues for all four matrices with only 3
[45]. The basis set was constructed from the direct product ofanczos stepsl(=3). A small shift, E=0.05, was chosen
three one-dimensional basis sets, each one of which appli¢gcause we were interested in only the first few smallest Ritz
to a single torsional coordinate. The pseudospectral techralues(matrix elements are generated in units of kcalimol
nique was used to construct the basis set for each torsionall matrices were directly diagonalize¢eigenvalues and
coordinate[46]. Along each of these coordinates, an oddeigenvectorsto assess the accuracy and efficiency of the
number of grid point¢denotedN,,) was used, and associated PC-GFBLA.
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TABLE IX. Time is adjusted user time, given by executing eigenspectrum dfl, which is effectively probed by using the
/usr/bin/time-p a.out on the RS-6000; errori®.1s. Disk /O time  Green-function filterG(E)=(E1—H) ! to drive the block
for reading the Hamiltonian matrix has been subtracted from thg anczos recursion. Preconditioning the initial block of Lanc-
quantities given in this table. zos vectors increases the number of converged Ritz values
and Ritz vectors substantially without significantly increas-

Matrix PC-GFBLA(Y Direct (8 ing computational time for cases whet¢—H [the inverse
ag, N=1150 20.9 66.6 filter, f(E) 1] can be factoredPC-GFBLA). When factor-
ag, N=1551 52.4 208.3 ing f(E) ! is not possible, preconditioning can still be ac-
ey, N=2280 139.2 633.1 complished by estimating the Green-function filter®$(E)

ey, N=3080 288.7 1697.7 (the EI-GFBLA method The block Lanczos procedure

would be driven by solving fo»GO(E)Qj at each step by
using an iterative linear system solvsuch as GMRE$26]

Because the Hamiltonian matrices were stored on disk p)i527)) or by using matrix partitioning and perturbative
and read into the PC-GFBLA code, most of the real and usetrechniqueil 9]

time (reported by executing /usr/bin/time-p a.out on the RS- i : . )
6000 is accounted for by disk I/O operations. We timed the The _PC GFBLA approach is c_Ie_:arI_y superior to the El
GFBLA: any number of preconditioning steps greatly en-

same runs for estimates of I/O time by stopping each J.Othance the rate of convergence of Ritz values near the shift
immediately after the disk file was completely read into core 9 . . . '
or small casesN=<3000), a 16% investment in user time

memory. The difference is then reported as the time spent fd{: , ) )
executing operations other than ICe., Lanczos iterations, (@t MOs} can result in converging almost one Ritz value per
diagonalizing the resulting matriX, and backtransforming L&nczos step. We store all Lanczos vectors and do a com-
Ritz values and Ritz vectorsAdjusted times for each case Plété reorthogonalization of every newly generated set of
are reported in Table IX. Thegy—a, transition is calcu- Lanczos vectors against every previously generated set,
lated as 113.6 ciit for both basis set sizes. The direct re- Ghost eigenvalues are not reported. Good eigenvalues are
sults and the PC-GFBLA results agree exactly for ugatp ~ determined by comparing two lists of Ritz values from di-
leas) 8 decimal places. The assignment of this transition to @gonalizing the full and truncated Lanczos matrices, then
band at 98.1 cm' has been reported by Klopper and Sizhu retaining values that appear on both lists. Degenerate and
[48]; Sabo and co-workert0] calculated this transition as nondegenerate eigenvalues are reported in excellent agree-
96.9 cm ! using a three-dimensional DVR approach. Calcu-ment with results from directly diagonalizirig.
lations made using a more refined potential than was used in Eigenvectors computed with the PC-GFBLA are linearly
the present study are presented in Guiang and Wxyait independent within a larger interval aroutid than those

The calculations made for the water trimer present thecomputed without preconditioning. Error bounds on Ritz val-
most compelling argument in favor of using a method suchyes can be computed at no extra cost and are shown to be a
as the PC-GFBLA: even though we were only interested ineliable check on the convergence of a Ritz pair when used

the lowest eigenvalue of the, matrices and the second low- jn conjunction with user-specified sorting and retention cri-
est eigenvalue of they matrices(and, for other applications, terig e, and ¢, .

the corresponding eigenvectiraze would be forced to do a
direct diagonalization oH to get the information. For the
larger basis set calculations, this translates to a more than
fivefold increase in user time. The PC-GFBLA is clearly a
more efficient way to obtain the same information with the
same accuracy.
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